
The phase transition behavior of random graphs

Manuele Leonelli

September 6, 2011



Abstract

In the last few years, because of the increasing importance of the study of
complex networks such as the World Wide Web or social networks, the study of
random graphs has experienced a great interest from the scientific community.
Indeed, they are a very simple model which can satisfactorily represent the
application considered, usually quite complex. In this dissertation we focus
on a fascinating property of random graphs: a phase-transition behavior for
the size of the largest component. Many different proofs of this behavior have
been proposed, using quite different approaches. In the last few years a new
approach has been proposed, which is based on quite basic probability concepts
and it is much easier than the other proofs developed. In particular, the main
point of this new approach is to compare, in a way that will be explained in the
dissertation, components of a random graph to branching processes and to exploit
the characteristics of this stochastic process. For this reason, the whole second
chapter is devoted to the study of branching processes. Moreover, the analysis of
the size of the components requires some concepts of probability theory, such as
large deviation theory and stochastic domination, which are not usually studied
by Master students. These introductory topics are introduced in the first chapter,
together with a brief review of the models of random graphs and a short summary
of graph theory’s terms. Thus, after the first two "introductory" chapters, in
the third one is developed the study of the phase transition behavior of random
graphs. The main aim of the work is to present the theorems and their proofs
about this topic in a comprehensive and accessible way, giving summaries and
detailed explanations of the main steps of the work.
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Chapter 1

Preliminaries

In this first chapter we will give some basic results about the main areas of
study of this project, that will be exploited in the rest of the work. In the first
section we will review some concepts of graph theory, in the second one we will
introduce the notion of random graph, while in the last we will consider some
probability concepts.

1.1 Graph theory

This section is based on the bibliographic references [1] and [2] and in particular
on the first two chapters of each of them. We will basically introduce all the
terms of graph theory that will be used in the following. Obviously, we are going
to start by explaining what a graph is.

A graph is a pair G = (V,E) of sets satisfying E ⊆ [V ]2: thus, the elements
of E are 2-element subsets of V . The elements of V are the vertices (or
nodes) of the graph G, while the elements of E are its edges. The number
of vertices of a graph G is its size. The usual way to picture a graph is
by drawing a shape (it can be, for example, a dot or an ellipse as in Figure
1.1) for each vertex and by joining together two of these shapes with a line
if the corresponding two vertices form an edge. In Figure 1.1 we can see
an example of a graph with vertex set V = {1, 2, 3, 4, 5, 6, 7} and edge set
E = {{1, 3}, {2, 3}, {1, 5}, {2, 5}, {4, 6}, {5, 6}, {3, 7}, {4, 7}}.

Figure 1.1: Example of a simple graph
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Before considering some particular types of graph, we have to introduce some
terms that regard the vertices and the edges. We say that a vertex v is incident
with an edge e if v ∈ e; in this case e is an edge at v. The two vertices incident
with an edge are its ends and an edge joins its ends. We will usually denote an
edge {x, y} with the more compact form xy (or yx). Two vertices x, y in G are
adjacent (or neighbors) if xy is an edge of G. Two edges e 6= f are adjacent
if they have an end in common.

We can now define some types of graph:

• A graph in which all the vertices are pairwise adjacent is called complete
graph;

• A path is a non-empty graph P = (V,E), with V = {x0, . . . xk} and
E = {x0x1, x1x2, . . . xk−1xk} where the xi’s are all distinct;

• A cycle is defined as a path, with the further characteristic that x0 = xk;

Figure 1.2: Example of a cycle and a path

• A graph G′ = (V ′, E′) is a subgraph of G = (V,E) if V ′ ⊆ V and E′ ⊆ E;

• If any two of the vertices of a non-empty graph are linked by a path, we
say that the graph is connected;

• A maximal connected subgraph of G is called a component of G.1 We
say that two vertices that belong to the same component are connected;

Figure 1.3: Example of a graph with two components

• A tree T is a connected graph which contains no cycles. The vertices with
one only neighbor are the leaves of the tree.

Any tree has the following two properties:

1The term maximal means that it is the largest possible subgraph: you could not find
another node anywhere in the graph such that it could be added to the subgraph and all the
nodes in the subgraph would still be connected.
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• Any two vertices of T are linked by a unique path in T ;

• A connected graph with n vertices is a tree if and only if it has n− 1 edges.

In the following, we will consider a particular class of trees, in which a
vertex has a special role and we will call this vertex root. In this case we can
refer to this graph as rooted tree. In this kind of trees is present a sense of
directionality: the graph starts at its root and then it develops through the
paths joining the root to the leaves.2

Figure 1.4: Example of a rooted tree

1.2 Random graphs

Roughly speaking, we can define a random graph to be a graph which is generated
by some random process. The notion of random graph finds its origin in the
fifties and is deeply linked to the paper of Paul Erdős and Alfréd Rényi "On
the evolution of random graphs". The model introduced by the Hungarian
mathematicians is a very easy one and can be described as follows: consider
a graph G, whose vertex set, V (G), is such that |V (G)| = n. Then a graph is

chosen at random from the set of all 2(n2) possible graphs with vertex set size
equal to n, where every possible graph has an equal probability of being chosen.
We can be a little more formal, saying that this model can be described as the
probability space (Ω,F ,P), where Ω is the set of all graphs with vertex set size
equal to n, F is the family of all subsets of Ω and for every graph ω ∈ Ω the

probability of being chosen, P(ω), is equal to 2−(n2) . The two most common
models of random graphs used nowadays, the binomial model and the uniform
model, both originate from this simple model. All the contents of this section
are based on [3].

The binomial model

In this model we consider a graph with n vertices in which an edge joining
any pair of vertices is drawn, independently from the others, with a certain
probability p. It can be viewed as the result of

(
n
2

)
independent coin tosses

with a probability of success p: that is, it depends on the result of a binomial
distribution with parameters

((
n
2

)
, p
)
.

Definition 1.1. Given a real number p ∈ [0, 1], the binomial random graph,
denoted by G(n, p) is defined by taking as Ω the set of all graphs with n vertices

2In the context of rooted trees, the definition of leaves that has given may be misleading. In
fact the root vertex may be connected to only one other vertex: however, we will not consider
in this situation the root as a leaf.
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and setting

P(G) = p|E(G)|(1− p)(
n
2)−|E(G)|.

The main advantage of the binomial model is the independence of presence
of edges, but the disadvantage is that the number of edges is not fixed.

The uniform model

This other model differs from the previous one basically in the fact that the size
of the edge set is fixed to be equal to a constant M . The probability distribution
of a graph with n vertices and M edges to be chosen is uniform.

Definition 1.2. Given an integer M ∈ [0,
(
n
2

)
], the uniform random graph,

denoted by G(n,M), is defined by taking as Ω the family of all graphs with n
vertices with exactly M edges, and as P the uniform probability on Ω, that is

P(G) =

((n
2

)
M

)−1

.

We can notice that the two models introduced are related, in the sense that,
if one conditions the binomial model on the event |E(G(n, p))| = M , then a
uniform space, that characterized the uniform model, is obtained. Moreover,
it is possible to prove that in many cases the two models are asymptotically
equivalent, provided that

(
n
2

)
p, which corresponds to the expected number of

edges in the binomial model, is close to M .

Random graph processes

In order to give an initial idea, we can say that a random graph process is
a stochastic process that describes a random graph evolving in time. It is a
family {G(t)}t∈T 3 of random graphs, with T ⊆ R+, where the parameter t is
interpreted as time that can be either discrete or continuous. We will consider
processes of random graphs with a fixed vertex set, starting without any edges
and growing monotonically by adding edges according to a certain rule, but
never deleting any of them. In this context, an important process is the one with
the following dynamics (sometimes called the random graph process): the process
begins with no edges at time 0 and adds new edges, one at a time, according to a
uniform probability among the edges that have not been selected yet. Hence this
random graph process is a Markov process, since the distribution of the future
edge selection depends exclusively on the actual configuration of the graph. The
time takes integer value in the set

(
0, 1, . . . ,

(
n
2

))
, and the M-th stage of the

process can be identified with the uniform random graph G(n,M).

1.3 Probabilistic methods

In this third section we introduce the concepts of probability theory that are
necessary to develop the analysis of random graphs. We now introduce some
notations too. If a random variable X is a binomial random variable with

3With this nomenclature, we are not specifying any particular model for the random graphs
considered.
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parameters (n, p), we will denote it as X ∼ B(n, p), while if Y is a Poisson with
mean λ, we will write Y ∼ P (λ). Moreover, if X is a Bernoulli with mean p, we
will simply write X ∼ B(p) and if Y is a continuous uniform in the interval [a, b],
then Y ∼ U [a, b]. Finally, we say that a sequence of independent and identically
distributed random variables are i.i.d. random variables and a sequence of i.i.d.

random variables following a certain distribution will be denoted with
i.i.d.∼ .

1.3.1 Inequalities and large deviation theory

At the beginning of this section, we recall two of the most famous inequalities
in probability theory: Markov and Chebyshev inequalities. They will become
very handy during the analysis of the phase transition and, for this reason, they
are now introduced. For all the inequalities, let X be a non-negative random
variable with E(X) <∞, then, for any t > 0, we have that

Markov: P (X ≥ t) ≤ E(X)

t
, (1.1)

Chebyshev: E(|X − E(X)| ≥ t) ≤ V ar(X)

t2
. (1.2)

Note that from (1.2) can be derived that

P (X = 0) ≤ V ar(X)

E(X)2
. (1.3)

At the end of this section we will introduce another inequality, which is
related to large deviation theory: an important part of modern probability that
we are going to introduce briefly.

Large deviation theory

The theory of large deviations is a part of probability theory that concerns
the asymptotic behavior of tails of sequences of probability distributions: that
is, when a sum of random variables deviates from its mean by more than a
"normal" amount. In order to understand what is meant by "normal" amount,
let’s consider a sequence of i.i.d. random variables X1, X2, . . . Xn, with means
µ and variances σ2, and consider Sn = X1 + . . . Xn. The famous central limit
theorem (CLT) states that

1√
nσ2

(Sn − nµ) →
n→∞

Normal(0, 1).

The interpretation is that the CLT quantifies the probability that Sn differs
from its expectation by an amount of order

√
n: deviations of this size are

called normal. A very gentle introduction about this area can be found in the
bibliographic reference [4]. The central point about large deviation theory is to
quantify the rate at which Sn differs from its expectation by an amount of order
n (which is a large amount, because it is beyond what stated by the CLT), as
n→∞. It can be proven that this decay happens at an exponential rate in n.
This result is expressed in the following theorem, which will not be proven, since
it is not instructive for the sequel.
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Theorem 1.3. Let X1, X2, . . . be i.i.d. random variables with values in R,
satisfying

φ(t) = E(etX1) <∞, ∀t ∈ R,
and let Sn =

∑n
i=1Xi. Then, for all a > E(X1),

lim
n→∞

1

n
ln (P (Sn ≥ an)) = −I(a), (1.4)

where
I(a) = sup

t∈R
[at− ln(φ(t))]. (1.5)

From this theorem becomes apparent how the decay of the tails of probability
distributions is exponential in n, because of the presence of the logarithmic
transformation in (1.4). The main interesting part of the theorem for the
analysis of random graphs is the so-called rate function I(a), that summarizes
the behavior of tails of distributions. We now compute the rate function for
some distributions of interest.

Example 1.4. Consider X ∼ B(p), with p ∈ [0, 1]. We first obtain φX(t).

φX(t) = E(etX) = e0P (X = 0) + etP (X = 1)

= 1− p+ pet.

So now we have to find the supremum in t of

L(a) = at− ln(1− p+ pet).

In order to do that, we have to compute the first derivative of L(a) and to find the
value of t for which it is equal to zero.

d

dt
L(a) = a−

1

1− p+ pet
pet = 0

a− ap+ apet − pet = 0

pet(a− 1) = a(p− 1)

et =
a

p

1− p
1− a

,

⇒ t = ln

(
a

p

)
− ln

(
1− a
1− p

)
.

We should check the second derivative in order to assure that this value of t is a
supremum: however, it can be easily done and so it is omitted. We have now to
substitute the maximized value of t in order to obtain I(a).

I(a) = a ln

(
a

p

)
− a ln

(
1− a
1− p

)
− ln

(
1− p+ pe

ln
(
a
p

)
−ln

(
1−a
1−p

))
= a ln

(
a

p

)
− a ln

(
1− a
1− p

)
− ln

(
1− p+ p

a(1− p)
p(1− a)

)
= a ln

(
a

p

)
− a ln

(
1− a
1− p

)
− ln

(
1− a− p+ ap+ a− ap

1− a

)
= a ln

(
a

p

)
− a ln

(
1− a
1− p

)
+ ln

(
1− a
1− p

)
= a ln

(
a

p

)
+ (1− a) ln

(
1− a
1− p

)
. (1.6)

Example 1.5. In this second example we will do the same calculations as in the
previous one, but in this case we are considering Y ∼ P (λ).

φY (t) =

∞∑
y=0

etye−λλy

y!

= e−λ
∞∑
y=0

(
λet
)y

y!

= e−λeλe
t

= eλ(e
t−1).
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In this case we have to find the supremum of

at− ln
(
eλ(e

t−1)
)
,

which, as before, can be easily done by computing the first derivative. Indeed,

d

dt
(at− λ(et − 1)) = a− λet = 0

et =
a

λ
,

⇒ t = ln
( a
λ

)
.

We now substitute as before to obtain that

I(a) = a ln
( a
λ

)
− λ(eln( aλ ) − 1)

= a ln
( a
λ

)
− λ

( a
λ

)
= λ− a− a ln

(
λ

a

)
. (1.7)

We now relate the rate functions of the Bernoulli and the Poisson distributions.
The following is based on [5].

Proposition 1.6. Let IB(a) be the rate function of a Bernoulli random variable
with parameter p as in (1.6), and let IP (a) be the the rate function of a Poisson
mean p as in (1.7). Then

IP (a) ≤ IB(a).

Moreover, IP (a) > 0, if a 6= p.

Proof. We first prove that the rate function of the binomial is bigger than the
one of the Poisson. Recall that, by Taylor expansion, we have that

ex =

∞∑
k=0

xk

k!
,

from which it follows that
ex ≥ 1 + x. (1.8)

So, we can also consider x = p(et − 1), so that

ep(e
t−1) ≥ 1 + p(et − 1) = 1− p+ pet,

which is the moment generating function of a Bernoulli. Finally, note that

IB(a) = sup
t∈R

(
at− ln

(
1− p+ pet

))
≥ sup

t∈R

(
at− p

(
et − 1

))
= sup

t∈R

(
at− ln

(
ep(e

t−1)
))

= IP (a).

To prove that the rate function of the Poisson distribution is bigger than zero,
note that IP (p) = 0 and that d

daIP (a) = ln(a) − ln(p). Thus, if a < p, the
function IP (a) decreases, while, if a > p, IP (a) increases: the result easily
follows from this observation.
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We are now ready to introduce the last inequality that will be fundamental
during the analysis of the component size of random graphs. In the literature, it
can be found with numerous different nomenclatures: however, we will refer to
this inequality with the name of Chernoff bound.

Theorem 1.7. Let X1, . . . , Xn be i.i.d. random variables with finite mean.
Then, for all a ≥ E(X1),

P

(
n∑
i=1

Xi ≥ na

)
≤ e−nI(a) (1.9)

where I(a) is the rate function of X1. Moreover, for any a ≤ E(X1)

P

(
n∑
i=1

Xi ≤ na

)
≤ e−nI(a) (1.10)

Proof. We start proving equation (1.9). Since the exponential is an invertible
function and by Markov inequality, we have that, for t ∈ R

P

(
n∑
i=0

Xi ≥ na

)
= P

(
et
∑n
i=0Xi ≥ etna

)
≤ e−ntaE

(
et
∑n
i=0Xi

)
= e−ntaE

(
etX1+···+tXn

)
= e−ntaE

(
etX1

)
· · ·E

(
etXn

)
= e−ntaE

(
etX1

)n
=

(
e−taE

(
etX1

))n
= e−n(ta−ln(E(etX1)))

This inequality is true for any t ∈ R, and in particular it is also true for the
supremum in t of the exponent of the last expression. Indeed

P

(
n∑
i=0

Xi ≥ na

)
≤ e−n supt∈R(ta−ln(E(etX1))) = e−nI(a)

For the proof of (1.10) we can just replace Xi by −Xi and repeat the same
procedure.

Note that this new inequality is simply an "optimized" version of Markov
inequality for sums of random variables. Indeed, after applying the exponential
transformation to the event that the sum of a sequence of random variables
exceeds its mean, we have just used Markov inequality and optimized it by
taking the supremum. Note also that this result, together with Proposition 1.6,
implies that the right tale of a binomial distribution is thinner than the one of a
Poisson, with the corresponding parameter.
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1.3.2 Couplings and Poisson approximation

Couplings are a powerful probabilistic tool and find their application in numerous
fields. For example, they play a fundamental role in bounding the total variation
distance between two random variables, aspect that is extensively discussed in
[6]. On the contrary, we will use them in this dissertation to prove the so-called
Poisson approximation. A very comprehensive introduction to the topic, with
numerous applications, can also be found in [7]. We have now to define what a
coupling between random variables is.

Definition 1.8. A coupling of a collection of random variables Xi, i ∈ I, where
I is some index set, is a family of random variables (X̂i : i ∈ I) defined on a
single probability space, such that Xi and X̂i have the same distribution, ∀i ∈ I.

For example, consider (X̂, Ŷ ) a coupling of the random variables X and Y :
the key point of the definition above is that while X and Y may be defined on
different probability spaces, the coupled random variables (X̂, Ŷ ) are defined
on the same probability space. Clearly, the easiest coupling is obtained when
X and Y are independent. Thus, a coupling has a fixed marginal distribution
(which is the distribution of the Xi’s), and the trick is to find a joint distribution
that fits one’s purposes.

Example 1.9. Let’s consider two Bernoulli random variables X and Y , with param-
eter 1/2. Recall that, for example, the Bernoulli distribution describe the probability

of the toss of a fair coin. One way to couple this two distributions is to define (X̂, Ŷ )
to be a pair of independent tosses, so that P (X = x, Y = y) = 1/4 for all x, y ∈ {0, 1}.
Another way to couple X and Y is to let X being a fair coin toss and define Y = X:
Y is forced to be equal to X. In this case, P (X = Y = 0) = 1/2, P (X = Y = 1) = 1/2
and P (X 6= Y ) = 0.

We now introduce a typology of couplings that will be used in the follow-
ing, called maximal coupling : it is a coupling such that the variables coincide
maximally, that is with the highest possible probability.

Theorem 1.10 (Maximal Coupling). Let Xi, i ∈ I, be a collection of dis-
crete random variables taking values in a countable set Ξ, each of them with a
probability mass function pi. Then, there exists a maximal coupling (X̂i : i ∈ I),
that is a coupling such that

P (C) =
∑
x∈Ξ

inf
i∈I

pi(x), (1.11)

where C is an event such that, if C occurs, then all the X̂i’s coincide, that is

C ⊆ {X̂i = X̂j : ∀i, j ∈ I}.

Proof. The first step of the proof is to show that the probability of the maximal
coupling event is less or equal to

∑
x∈Ξ infi∈I pi(x). In order to do that, note

that for all i, j ∈ I and x ∈ Ξ, we have that

P (X̂i = x,C) = P (X̂j = x,C) ≤ pj(x),

since coupled variables have the same probability mass function of the original
ones and since the probability of an intersection of events is always less or equal
to the probability of one of the single events. Thus

P (X̂i = x,C) ≤ inf
j∈I

pj(x), ∀i ∈ I, x ∈ Ξ.
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If we sum over x ∈ Ξ, we obtain that

P (C) ≤
∑
x∈Ξ

inf
i∈I

pi(x).

We now have to construct a coupling such that the above inequality holds as an
identity. Consider c =

∑
x∈Ξ infi∈I pi(x) ∈ (0, 1) and let I, V,Wi be independent

random variables for i ∈ I such that:

I ∼ B(c),

P (V = x) =
infi∈I pi(x)

c
, ∀x ∈ Ξ,

P (Wi = x) =
pi(x)− cP (V = x)

1− c
, ∀x ∈ Ξ, i ∈ I.

Then, we define for each i ∈ I

X̂i =

{
V if I = 1
Wi if I = 0.

So, (X̂i : i ∈ I) is a coupling, since

P (X̂i = x) = P (I = 0)P (Wi = x) + P (I = 1)P (V = x)

= (1− c)pi(x)− cP (V = x)

1− c
+ cP (V = x)

= pi(x) = P (Xi = x)

If we take C = {I = 1}, then Xi = V ∀i ∈ I and so it is an appropriate event.
Moreover, P (C) = c, as required.

We now have to consider the two cases in which c = 0 or c = 1. If c = 0, then∑
x∈Ξ

inf
i∈I

pi(x) = 0 =⇒ inf
i∈I

pi(x) = 0 for every x ∈ Ξ

and so there has to exist at least one i ∈ I for which P (X̂i = x) = 0 for every
x ∈ Ξ. For this reason, the only possible choice is to take C = ∅ and the X̂i’s all
independent of each other (so to obtain a coupling). On the contrary, if c = 1,
then ∑

x∈Ξ

inf
i∈I

pi(x) = 1 =⇒ inf
i∈I

pi(x) is a probability distribution,

but this happens only if all the X̂i’s are identically distributed and C is the set
of all possible outcomes.

Poisson approximation

During the exploration of a component of a random graph, we will use many
times the fact that, when n is large, a binomial distribution can be approximated
by a Poisson distribution. We now give a coupling representation of this property.
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Theorem 1.11. Let X ∼ B(n, p) and let Y ∼ P (λ), where λ = np and p ∈ [0, 1].
Then, there exists a coupling (X̂, Ŷ ) of X and Y such that

P (X̂ 6= Ŷ ) ≤ λ2

n
.

Before starting the proof, a little remark: note that Theorem 1.11 states that
the probability that a binomial is different from a Poisson in the limit (that is,
as the number of Bernoulli random variables that compounds the binomial gets
larger) tends to zero.

Proof. Let X1, . . . , Xn
i.i.d.∼ B(p), and thus X = X1 + · · ·+Xn. Consider also

Y1, . . . , Yn
i.i.d.∼ P (p): thus also Y = Y1 + · · ·Yn. Let (X̂1, Ŷ1), . . . , (X̂n, Ŷn) be

independent pairs such that, for each i, (X̂i, Ŷi) is a maximal coupling of Xi and
Yi, where the existence of a maximal coupling is guaranteed by Theorem 1.10.
Now set

X̂ = X̂1 + · · · X̂n and Ŷ = Ŷ1 + · · ·+ Ŷn.

Clearly, (X̂, Ŷ ) is a coupling of X and Y . Note that

P (X̂ 6= Ŷ ) ≤
n∑
i=1

P (X̂i 6= Ŷi).

We have now to deduce how to construct the maximal coupling (X̂i, Ŷi): note
that in this case, following the nomenclature of Theorem 1.10, we can choose
the set C to be equal to {X̂i = Ŷi} and that (1.11) can be written as

P (X̂i = Ŷi) =

∞∑
x=0

min{P (X̂i = x), P (Ŷi = x)}

= min{P (X̂i = 0), P (Ŷi = 0)}+ min{P (X̂i = 1), P (Ŷi = 1)},

since for a Bernoulli random variable P (Xi = x) = 0, ∀x ≥ 2. Recalling the
result in (1.8), we can deduce that

P (X̂i = 0) = 1− p ≤ e−p = P (Ŷi = 0),

P (X̂i = 1) = p ≥ pe−p = P (Ŷi = 1),

where the second inequality holds, since e−p ∈ [1/e, 1] for p ∈ [0, 1]. Thus

P (X̂i = Ŷi) = 1− p+ pe−p ≥ 1− p+ p(1− p) = 1− p2

=⇒ P (X̂i 6= Ŷi) ≤ p2.

Finally,

P (X̂ 6= Ŷ ) ≤
n∑
i=1

P (X̂i 6= Ŷi)

≤
n∑
i=1

p2 =

n∑
i=1

(
λ

n

)2

= n
λ2

n2
=
λ2

n
.
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1.3.3 Stochastic domination

The concept of stochastic order is widely used in probability and decision theory
in order to compare random variables. It will play a fundamental role in the
third chapter and, for this reason, a brief introduction is necessary. This section
is mainly based on [7]. We start by defining what is meant by the term stochastic
domination.

Definition 1.12. Let X and Y be two R-valued random variables. We say that
X is stochastically dominated by Y if, for every x ∈ R,

FX(x) ≥ FY (x),

where F is the the distribution function of the random variables. We denote this
by X � Y .

This notion, roughly speaking, relates two random variables by considering
the chance of one being "bigger" than one other. It is somehow a probabilistic
equivalent of the pointwise domination, which is the classical > or < relationship
between functions. Consider two functions f and g, defined on the whole real line:
we say that f is pointwise dominated by g if f(x) < g(x), ∀x ∈ R. However, we
can relate the concept of pointwise domination to probability theory by simply
noting that, X is pointwise dominated by Y , if P (X ≤ Y ) = 1, where X and Y
are R-valued random variables.

Now we introduce a coupling characterization of stochastic domination, which
will be used later.

Theorem 1.13. Let X and Y be two real-valued random variables. Then X is
stochastically dominated by Y if and only if there exists a coupling (X̂, Ŷ ) of X
and Y such that X̂ ≤ Ŷ : that is, X̂ is pointwise dominated by Ŷ .

Proof. If X̂ ≤ Ŷ , then {Ŷ ≤ x} ⊆ {X̂ ≤ x}, which implies that P (Ŷ ≤ x) ≤
P (X̂ ≤ x) and so

FY (x) ≤ FX(x), ∀x ∈ R.

For the other direction, note that if X is stochastically dominated by Y , FX(x) ≥
FY (x), ∀x ∈ R. It follows that, for all u ∈ [0, 1],

F−1
X (u) ≤ F−1

Y (u),

where F−1 is, in the discrete case, the generalized inverse of F , defined as

F−1
X (u) = {inf x ∈ R : FX(x) ≥ u}.

However, it is well-known that, if U ∼ U [0, 1], then

X = F−1
X (U) and Y = F−1

Y (U),

from which the result follows.

There are several natural examples of pairs of random variables that are
stochastically ordered, and we will see two of them in the following examples.
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Example 1.14. Let’s consider two Poisson random variables, X ∼ P (λ) and Y ∼
P (µ), where λ ≤ µ. We can construct a coupling of these two random variables by

simply letting X̂ ∼ P (λ) and Ẑ ∼ P (µ − λ), where X̂ and Ẑ are independent. Let also

Ŷ = X̂+ Ẑ and thus Ŷ ∼ P (µ), since the sum of independent Poisson random variables
is a Poisson random variable too. Moreover, since all the distributions are bigger or
equal than zero, we have that X̂ ≤ Ŷ , which means that, because of Theorem 1.13,
X � Y .

Example 1.15. Consider now two binomial random variables, X ∼ B(m, p) and Y ∼
B(n, p), where m ≤ n and p ∈ [0, 1]. Also in this case we can construct a simple coupling
between these two variables, by simply recalling that a binomial random variable is the
sum of i.i.d. Bernoulli random variables. So, let X̂ =

∑m
i=1 Zi and Ŷ =

∑n
i=1 Zi, where

Z1, . . . , Zn
i.i.d.∼ B(p). Then, since the Bernoulli is a non-negative random variable and

since Ŷ = X̂ + Zm+1 · · ·+ Zn, we have that X̂ ≤ Ŷ and thus X � Y .
Note that, by the same reasoning, it can be proven that X1 � Y , where in this case

X1 ∼ B(n− Z, p), with Z any non-negative random variable.

1.3.4 Markov chains and random walks

In the next chapter we will give a random walk construction of branching
processes, and the same idea will be fundamental while exploring the components
of a random graph. For this reason, a very brief introduction on the topic is
necessary and we will start with the definition of a discrete Markov chain: random
walks are a particular case of this stochastic process. The following is mostly
based on the bibliographic reference [8].

Definition 1.16. Let X0, X1, X2, . . . be a collection of random variables taking
values in E ⊆ Z. Then, {Xt}∞t=0 is a Markov chain if, ∀t ≥ 0,

P (Xt = xt|Xt−1 = xt−1, . . . , X1 = x1, X0 = x0) = P (Xt = xt|Xt−1 = xt−1).
(1.12)

The condition in (1.12) is also known as Markov property and the elements
of E are called the states of the chain.

If we think of the subscript t of the previous definition as an index of time,
like days, the main characteristic of a Markov process is that what will happen
tomorrow depends only on what is the state of the process today. For example,
we can think of a frog that everyday makes a jump between lily pads. If the
position in which we will find the frog tomorrow is influenced only by the lily pad
in which it lies today, then we can say that the jumping frog moves according to
a Markov chain.

There are many interesting properties of this kind of processes and a lot
of characteristics to be studied: however, we will only introduce the so-called
hitting time.

Definition 1.17. Let {Xt}∞t=0 be a Markov chain with state space E. Then, for
x ∈ E, we say that τx is an hitting time if

τx = min{t ≥ 0 : Xt = x} (1.13)

Thus, an hitting time is the first time in which the chain visits a particular
state. In the following, when necessary, we will stress the position from which
the chain starts, by inserting the subscript Pk(. . . ), if the chain starts from the
state k.

We are now ready to give the definition of a random walk.
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Definition 1.18. Let X0, X1, X2, . . . be i.i.d. discrete random variables taking
values in a set E ⊆ Z. Let also Sn = k +X1 +X2 + · · ·Xn, where n > 0 and
X0 = k. Then, {Sn}∞n=1 is a random walk starting at k.

Clearly, a random walk is a Markov chain since Sn = Sn−1 +Xn. There are
a lot of examples of random walks: the simplest one is a particle that moves on
the integer line. In a more general case, we can think of a particle that moves on
the vertices of a graph, in which every vertex is denoted by an integer number.

The definition a random walk is almost all we need to proceed to the study of
branching processes: we have to prove only one property of random walks, that
will be exploited in the next two chapters. The proof of the following theorem is
based on [9].

Theorem 1.19. Let {Sn}∞n=0 be a random walk starting at k ≥ 0, such that
Sn = k +X1 + · · ·Xn, where X1, X2, . . . are i.i.d. random variables satisfying
P (X1 ≥ −1) = 1. Let also τ0 be the hitting time of the origin. Then

Pk(τ0 = n) =
k

n
Pk(Sn = 0). (1.14)

Proof. We will prove this result by induction on n. We start by showing
that (1.14) holds when n = 1. If k = 0, the right-hand side is equal to
zero, since there is a k on the numerator, while for the left-hand side, note
that P0(τ0 = 1) = 0. If k > 1, both sides are equal to zero too, since the
walk can make only one step when n = 1 and X1 ≥ −1 almost surely.4 If
k = 1, P1(τ0 = 1) = P1(S1 = 0) = P1(1 + X1 = 0) = P1(X1 = −1) and
k
nPk(Sn = 0) = P1(S1 = 0): thus (1.14) holds for n = 1.

We suppose it is also true for n− 1. We can restrict the analysis to the case
k ≥ 1, since, again, for k = 0 both sides are equal to zero. Then, by the law of
total probability

Pk(τ0 = n) =

∞∑
s=−1

Pk(τ0 = n|X1 = s)P (X1 = s).

Because of the Markov property, we can also note that

Pk(τ0 = n|X1 = s) = Pk+s(τ0 = n− 1) =
k + s

n− 1
Pk+s(Sn−1 = 0),

where the last equality holds because of the inductive hypothesis. Thus, using

4Note that this observation can be easily extended for any value of n. Indeed, if k > n,
Pk(τ0 = n) = 0, since the walk can move back by at most n in n steps.
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Bayes theorem and again the Markov property:

Pk(τ0 = n) =

∞∑
s=−1

k + s

n− 1
Pk+s(Sn−1 = 0)P (X1 = s)

=

∞∑
s=−1

k + s

n− 1
Pk(Sn = 0|X1 = s)P (X1 = s)

=

∞∑
s=−1

k + s

n− 1
Pk(X1 = s|Sn = 0)Pk(Sn = 0)

=
k

n− 1
Pk(Sn = 0)

∞∑
s=−1

Pk(X1 = s|Sn = 0)

+
1

n− 1
Pk(Sn = 0)

∞∑
s=−1

sPk(X1 = s|Sn = 0)

=
k

n− 1
Pk(Sn = 0) +

1

n− 1
Pk(Sn = 0)Ek(X1|Sn = 0)

=
Pk(Sn = 0)

n− 1
(k + Ek(X1|Sn = 0)).

Now, since the Xi’s are identically distributed, Ek(Xi|Sn = 0) is equal for all
i = 1, . . . , n. Thus

Ek(X1|Sn = 0) =
1

n

n∑
i=1

Ek(Xi|Sn = 0) =
1

n
Ek

(
n∑
i=1

Xi|Sn = 0

)
= −k

n
,

since the random walk starts at k and it is forced to be equal to zero at
Sn =

∑n
i=1Xi. Finally,

Pk(τ0 = n) =
Pk(Sn = 0)

n− 1

(
k − k

n

)
=

Pk(Sn = 0)

n− 1

(
k(n− 1)

n

)
=

k

n
Pk(Sn = 0)

as required.
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Branching processes

Branching processes are a very important tool in the study of the phase transition
of the largest component size of a random graph and, for this reason, we will
introduce the main features of this kind of processes. In the first section we will
define what a branching process is; in the second one we will study some useful
characteristics, while in the third we will introduce a different characterization of
this stochastic process. Finally, in the last section, we will study two particular
branching processes. The whole chapter is mainly based on the bibliographic
references [10] and [5].

2.1 Introduction

A branching process is a stochastic process that may be used as a simple
model to describe a bacterial growth or the spread of a family name. This
process models a population in which each individual in generation1 n produces
some random number of individuals in generation n + 1, according to a fixed
probability distribution that does not vary from individual to individual. We will
always consider processes that start with one individual in the first generation
(generation zero). The usual way to represent such a process is through a rooted
tree, in which every level represents a generation.

In Figure 2.1 we can see a tree that describes the dynamic of a branching
process. The first generation consists of an individual which generates three
offspring : the first one (on the left) generates a single offspring, the second
one (in the middle) has two offspring while the last one does not generate any
offspring. The process can continue in this way until a generation of individuals
does not produce any offspring: in this case the process dies out and becomes
extinct. We are now ready to define this process.

Definition 2.1. Let X be an integer-valued non-negative random variable with
probability mass function pX(x), for x = 0, 1, . . . . We say that a sequence of
random variables {Zn}n∈N is a branching process if

• Z0 = 1;

• Zn+1 = X
(n)
1 +X

(n)
2 + · · ·+X

(n)
Zn

;

1With the term generation we refer to the set of individuals born at the same time.

17
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Figure 2.1: Example of a tree representing a Branching process

where all the random variables X
(n)
j ’s have the same distribution as X and are

independent of each other.

The generic variable X
(n)
j represents the number of offspring of the individual

j that generates this offspring at time n and it is usually called family-size
distribution or offspring distribution. In Definition 2.1 we have stressed the fact
that the variables Xj ’s correspond to the n-th generation by putting the letter n
as superscript. However, in the following, the n will be dropped in the situations
in which this causes no doubts, in order to make the nomenclature easier. Clearly,
a branching process is a Markov chain since the number of individuals in the
n-th generation depends only on the number of individuals in the previous one.

From now on we can assume that P (X = x) 6= 1 for x = 0, 1, . . . in order to
avoid trivialities: indeed, if the probability of having k offspring is equal to one,
then there is no randomness in the process.

2.2 Characteristics of the process

In this section we are going to introduce three main properties of branching
processes: the mean behavior of the process, the total progeny and the extinction
probability .

The mean behavior of the process

We want to derive the first moment of the process at time n. The first step in
the study of branching processes is to understand how to find the distribution
of the Z’s in term of the family-size mass function. Clearly, Z0 = 1 and
P (Z1 = x) = pX(x) for x = 0, 1, . . . . It is not so easy, however, to derive the
mass function of Z2 since it is the sum of a random number of i.i.d. random
variables. This kind of sums is treated in an easier way by using the probability
generating functions. We write

Gn(s) = E
(
sZn
)

=

∞∑
x=0

sxP (Zn = x)
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for the probability generating function of Zn, and

GX(s) =

∞∑
x=0

sxpX(x)

for the probability generating function of a typical family size. Our first goal is
to express Gn in terms of GX .

Theorem 2.2. The probability generating functions GX , G0, G1, . . . satisfy

G0(s) = s, Gn(s) = Gn−1(GX(s)) for n = 1, 2, . . .

and hence Gn is the n-th iterate of GX :

Gn(s) = GX(GX(· · ·GX(s) · · · )) for n = 0, 1, . . .

Proof. For the first two results, we can note that

G0(s) = E
(
sZ0
)

= E(s1) = s.

Gn(s) = E
(
sZn
)

= E
(
sX1+...XZn−1

)
=

∞∑
i=0

E
(
sX1+...XZn−1 |Zn−1 = i

)
P (Zn−1 = i)

=

∞∑
n=0

E
(
sX1+...Xi

)
P (Zn−1 = i)

=

∞∑
n=0

[GX(s)]iP (Zn−1 = i) = Gn−1(GX(s)).

Hence, iterating this result

Gn(s) = Gn−1(GX(s)) = Gn−2(GX(GX(s)))

= · · · = GX(GX(· · ·GX(s) · · · )).

We are now ready to derive the mean value of the number of individuals in a
generic generation n.

Theorem 2.3. Let µ be the mean of the family-size distribution, that is µ =∑∞
x=0 xpX(x). Then

E(Zn) = µn. (2.1)

Proof. By the properties of the probability generating function, we have that

E(Zn) = G
′

n(1) = G
′

n−1(GX(1))G
′

X(1)

= G
′

n−1(1)G
′

X(1) = µE(Zn−1)

= µ2E(Zn−2) = · · · = µnE(Z0) = µn.
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Formula 2.1 gives an idea about the mean behavior of the process at the
limit. Indeed

lim
n→∞

E(Zn) =

 0 if µ < 0
1 if µ = 1
∞ if µ > 1

So, if µ is less than one we expect the process to become extinct, while, if µ is
bigger than one, the mean number of individuals in a generation at the limit
is not zero. We will show that, if µ > 1, there is a certain probability for the
process not to become extinct. This remark shows the presence for branching
processes of a so-called phase transition. Until µ < 1 there is a certain behavior,
which all of a sudden changes for µ > 1. This is the reason why branching
processes are so important in the study of the phase transition of the largest
component of a random graph, since both processes share this behavior. If µ = 1,
then we are in the critical case. We are now ready to derive the results for the
probability of the population to become extinct.

Extinction probability

We denote the probability of ultimate extinction by

η = P (∃n : Zn = 0),

while we define the probability that the branching process is extinct by the nth
generation as

ηn = P (Zn = 0).

The following theorem contains every information about the extinction of a
branching process.

Theorem 2.4. The probability η of ultimate extinction is the smallest non-
negative root of the equation

x = GX(x). (2.2)

Moreover, this probability η is equal to one if and only if the mean family-size µ
satisfies µ ≤ 1.

Remark 2.5. We suppose that P (X = 0) > 0, since otherwise η = 0 and µ > 1.

Proof. The first step in this proof consists of showing that equation (2.2) is true.
Firstly note that if Zn = 0, then Zm = 0, for all m ≥ n. Thus, ηn ≤ ηn+1, since
’Zn = 0’ implies ’Zn+1 = 0’. Hence

η = lim
n→∞

ηn

exists, since the sequence of ηn’s concerns an increasing sequence of events with
limit η. We also note that Gn(0) = P (Zn = 0) = ηn. Now, since

Gn(s) = Gn−1(GX(s)) = GX(GX(· · · (s) · · · ))
= GX(Gn−1(s)),

setting s = 0, we obtain that

ηn = GX(ηn−1),
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with boundary condition η0 = 0.2 Taking limits, it follows that

η = GX(η).

We now have to show that η is the smallest non-negative root of equation (2.2).
Suppose that ε is any non negative root of (2.2) too. We shall show that η ≤ ε.
Firstly, note that GX is a non decreasing function on [0, 1], since it has non
negative coefficients3. Hence,

η1 = GX(0) ≤ GX(ε) = ε

because ε ∈ [0, 1]. Then

η1 ≤ ε =⇒ GX(η1) ≤ GX(ε),

and so
η2 ≤ ε.

Iterating this process, it follows that

ηn ≤ ε for n = 1, 2, . . .

from which it follows that
η = lim

n→∞
ηn ≤ ε.

At this point, we just have to prove that the probability of ultimate extinction
is equal to one if and only if the mean family-size is less or equal than one. We
have already seen and, implicitly used, the fact that in [0, 1] the function GX is
continuous and non-decreasing. It is also possible to show that it is convex (by
simply computing the second-derivative of the series and noting that it is always
positive). For these three reasons the shape of the curve GX may look like the
ones in Figure 2.2. By looking at the picture, we deduce that there can be either
one or two intersection in [0, 1] between the curve y = GX(x) (black line) and
the red line corresponding to y = x. The smallest intersection between these two

Figure 2.2: The two possible shapes of GX

curves, corresponds to the probability of ultimate extinction. So, in the graph
on the left we notice that this probability is less than one, because there are two
distinct intersections, while in the other one there is a unique intersection at
x = 1, and so η = 1. However, we can also notice in the graph on the left that
the slope of the curve GX(x) at x = 1 is bigger than one (which corresponds to
the slope of the straight line), concluding that in this case µ = G

′

X(1) > 1. By

same reasoning, we conclude that η = 1 if and only if µ = G
′

X(1) ≤ 1.

2This follows from the fact that at time zero, there is certainly one and only one individual.
3The coefficients of the sum GX =

∑∞
x=0 s

xP (X = x) are the components of the probability
mass function, that is, they are probabilities: hence bigger than zero.
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Total progeny

Definition 2.6. Let {Zn}n∈N be a branching process. Then

T =

∞∑
n=0

Zn

is called the total progeny of the branching process.

Clearly, the total progeny represents the number of all the individuals in a
branching process: this number is finite if the process becomes extinct. It will
be fundamental to quantify the size of a component of a random graph: indeed,
we will compare a component of a graph to a branching process, and its size will
be described by the total progeny.
We now consider the expected total progeny.

Proposition 2.7. For a branching process {Zn}n∈N, in which the expected
family-size µ is less than one, the expected total progeny is

E(T ) =
1

1− µ
. (2.3)

Proof.

E(T ) = E

( ∞∑
n=0

Zn

)
=

∞∑
n=0

E(Zn) =

∞∑
n=0

µn =
1

1− µ
,

where the possibility of interchanging the summation and the expectation is
guaranteed by monotone convergence.

2.3 Random walk perspective

In the previous sections of this chapter we have always considered branching
processes by looking at the number of descendant of each generation. We can
also look at them from another perspective, which will be really useful for the
analysis of random graphs: we can sequentially investigate the number of children
of each member of the population. In the perspective introduced in the first
section, we look at a whole generation at a time, starting from the root vertex
to the successive generations. In the random walk perspective we do not care
about the generations as a whole, but we just look at the offspring of every
single individual. At every time step, we look at an individual and we discover
its number of offspring. Then we pick any other vertex, in any generation, we
look at its progeny and so on. This way of considering branching processes
leads to the random walk formulation. The reason for this terminology will
become apparent later and we now start by giving a simple representation of
it. Consider a branching process and consider the root vertex as the only active
individual. At the generic time i, we select one of the active individuals in the
population, and give it Xi children, where Xi is, as before, the random variable
that represents the family-size. The children (if any) of the selected individual
are set to active, and the individual becomes inactive. This process continues
as long as there are active individuals in the population. This means that if
the process never dies out, we will keep looking for new active individuals an
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infinite number of times. On the contrary, if the population dies out, once all
the individuals that correspond to leaf vertices are inactive, there will be no
more active individuals to investigate. Intuitively, the set of active individuals
corresponds to the number of individuals we have seen but whose children we
have not yet explored.

There are two canonical ways in which we can sequentially choose which
is the vertex to look at. These two procedures correspond to two well-known
algorithms: the depth-first search and the breadth-first search. In order
to explain this algorithms we need first to introduce a labeling for trees, which
is known as Ulam-Harris labeling.

Figure 2.3: Example of a tree with Ulam-Harris labeling

The labeling works in the following way: we assign a conventional symbol
to the root vertex (in Figure 2.3 is 0, but it can also be ∅); then, we assign
to the first generation numbers from 1 to n (from the left to the right or vice
versa), where n is the number of individuals in the first generation. Then, in the
second generation every individual is identified by two numbers: the first one
corresponds to the number of the adjacent vertex in the first generation, while
the second one is assigned, as before, among all the progeny of the adjacent
vertex considered. So, for example, in Figure 2.3, there are three vertices in
the second generation: the first one on the left has label 11 because is the first
children of the individual labeled 1. The process of labeling continues in this
fashion as long as there are vertices to be labeled.

Now that we have introduced this nomenclature we can explain how the
breadth-first search and the depth-first search work, with the help of a simple
example. A very precise discussion about the algorithms can be found in [11],
where they are introduced from a computational point of view.

The depth-first search algorithm, once a vertex is visited, explores all its
progeny, going deep down the tree. In this way it is possible that vertices far
from the root are visited before vertices that belong to the first generation. For
example, if we apply this algorithm to the tree in Figure 2.3 the lexicographical
order in which we will explore the vertices is 0, 1, 11, 12, 2, 3, 31, 311.

On the contrary, in the breadth-first search algorithm the vertices are
explored according to their generation: after the root vertex, it visits all the
vertices of the first generation, then the second one and so on. This algorithm
clearly investigates the branching process in the classic way, by looking at a
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whole generation before moving to others. In this other case the vertices of the
tree in Figure 2.3 are explored with the following lexicographical order: 0, 1, 2,
3, 11, 12, 31, 311.

A way in which is easy to describe the "search" process is through a dot-plot,
in which the x-axis represents the number of the iteration, while the y-axis
represents the number of active individuals after the corresponding iteration.
In Figures 2.4 and 2.5 we can see the dot-plots corresponding to the search

Figure 2.4: Number of active individuals in a depth-first search

Figure 2.5: Number of active individuals in a breadth-first search

process with the two algorithms for the branching process described by the tree
in Figure 2.3.

We are now ready to introduce the random walk representation of a branching
process. Let X1, X2, . . . be a sequence of i.i.d. random variables, each of
them representing the family-size of an individual. We define S0, S1, . . . by the
recursion:

S0 = 1 (2.4)

Si = Si−1 +Xi − 1 = X1 + · · ·+Xi − (i− 1). (2.5)

Let also T be the smallest t for which St = 0, that is

T = inf{t : St = 0} = inf{t : X1 + · · ·Xt = t− 1}. (2.6)

Si represents the number of active individuals after the i-th investigation, that
is, the number of seen, but not yet explored, individuals, as we noted earlier. It
is also clear that, the sequence of Si’s represents a stochastic process really close
to a random walk: indeed, it is simply the sum of some i.i.d. random variables,
in which the value of the process at time i is determined only by the position
of the process at time i − 1 and by the value of the variable Xi (there is also
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a correction term i− 1 that subtracts the number of inactive individuals). We
can actually relate equations (2.4) and (2.5) to Definition 1.18 of a random walk
by simply considering Si = Si−1 + Yi, where Yi = Xi − 1, ∀i ≥ 1 and S0 = 1.
We can also note that T represents the total progeny of the process, because we
defined it to be the first time (actually it is also the only one) in which there are
no more active individuals to explore. This description is equivalent to Definition
2.1 of a branching process, and we will exploit it extensively in the next chapter.

The random-walk formulation of branching processes allows us to study
the probability of extinction when the family tree has at least a given size. In
particular, the following theorem states that when the total progeny is large, then
the probability of the branching process to become extinct tends to zero. Before
stating and proving the theorem, we need to introduce some nomenclature.

Consider two functions, f and g, defined on some subset of the integers. We
say that f(n) = O(g(n)) if and only if there exists a positive constant M and a
number n0 such that |f(n)| < M |g(n)|, ∀n > n0.

Theorem 2.8. Let X1, . . . , Xn be the family-size random variables of the branch-
ing process with total progeny T . If the mean of the generic family-size random
variable is less or equal to 1, that is E(Xi) ≤ 1, then

P (k ≤ T <∞) = O
(
e−kI(1)

)
, (2.7)

where I(1) is the rate function of Xi in 1.

Proof. Let Si be the number of active vertices after the i-th exploration. As
noted before the process becomes extinct when Si = 0 for the first time. Thus

P (k ≤ T <∞) =

∞∑
i=k

P (inf{i : Si = 0}) ≤
∞∑
i=k

P (Si = 0).

Because of equation (2.5), we also know that

∞∑
i=k

P (Si = 0) =

∞∑
i=k

P (X1 + · · ·+Xi = i− 1) ≤
∞∑
i=k

P (X1 + · · ·+Xi ≤ i).

Now, because of the Chernoff bound in equation (1.10) and after some easy
calculations, we can notice that

P (k ≤ T <∞) ≤
∞∑
i=k

e−sI(1)

=

∞∑
i=0

e−sI(1) −
k−1∑
i=0

e−sI(1)

=
1

1− e−I(1)
− 1− e−kI(1)

1− e−I(1)

=
e−kI(1)

1− e−I(1)
= O

(
e−kI(1)

)
.
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2.4 Binomial and Poisson branching processes

In this section we are going to introduce a result that we will use extensively in
the next chapter. We will consider a binomial model for random graphs and, as
said, we will compare the components to branching processes with a binomial
offspring distribution. Moreover, we will use the Poisson approximation to relate
a branching process with binomial offspring distribution to another process with
Poisson offspring distribution. For this reason we introduce now the so-called
Poisson branching process and then we will see the relationship between binomial
and Poisson branching processes.

Poisson and binomial branching processes

We say that a branching process is a Poisson branching process with mean λ
if the offspring distributions are Poisson random variables with mean λ. For this
kind of branching processes we can compute all the characteristics introduced in
the previous section. We start by computing the extinction probability.

Recalling that, if X ∼ P (λ), the probability generating function of X in s is
eλ(s−1), we can compute the probability that a Poisson branching process with
mean λ dies out, which can be found from the equation

s = exp(λ(s− 1)).

If λ > 1, the probability of extinction is 1− β(λ), where β = β(λ) ∈ (0, 1) is the
survival probability and β can be uniquely determined by the equation

β + exp(−βλ) = 1, (2.8)

since
1− β = exp(λ(1− β − 1)) = exp(−βλ).

We can also compute the total expected progeny of such a process, since,
from equation (2.3), it is simply

1

1− λ
.

It is also possible to know something more about the total progeny of a
Poisson branching process, and in particular we can compute the probability
mass function of the total progeny.

Theorem 2.9. Let T be the total progeny of a Poisson branching process with
mean λ > 0. Then

P (T = n) =
e−λn(λn)n−1

n!

Proof. We will exploit in this proof the random-walk representation of a branch-
ing process. We start by noting that, in the random-walk setting, the total
progeny, as defined in (2.6), is simply the hitting time of the origin, as in (1.13).
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For this reason, we can use Theorem 1.19 to deduce that4

P1(T = n) =
1

n
P1(Sn = 0)

=
1

n
P1(Y1 + · · ·Yn = 0)

=
1

n
P1(X1 + · · ·Xn = n− 1),

where the generic Xi is the family-size distribution (in this case a Poisson random
variable with mean λ) and Yi = Xi − 1. Since the Xi’s are also independent, the
sum is a Poisson random variable with mean nλ and the result follows.

We introduce also the binomial branching process. Intuitively, we say that a
branching process is a binomial branching process with parameters (n, p) if the
offspring distribution is binomial with parameters (n, p). We will not need any
further consideration about this kind of process and, thus, we just proceed to
the comparison of the two processes.

Comparison of the two processes

We define now some notation before stating next theorem: we say that f(n) =
o(g(n))) as n → ∞, if g(n) > 0, n ∈ N, and limn→∞ |f(n)|/g(n) = 0. This
means, roughly speaking, that g(n) goes to the limit faster than f(n).

The theorem that we are going to introduce states that, when n gets bigger,
the probability that the total progenies of a binomial and a Poisson branching
process are different is almost surely zero.

Theorem 2.10. Let TBn,p be the total progeny of a binomial branching process

with parameters (n, p) and let also TPλ be the total progeny of a Poisson branching
process with mean λ, where λ = np. Then, for any k ≥ 1

P (TBn,p ≥ k) = P (TPλ ≥ k) +O(k/n), (2.9)

which, alternatively, can also be written as

P (TBn,p ≥ k) = P (TPλ ≥ k) + o(1) (2.10)

Proof. We start this proof by simply noting that, from the law of total probability,

P (TBn,p ≥ k) = P (TBn,p ≥ k, TPλ ≥ k) + P (TBn,p ≥ k, TPλ < k),

P (TPλ ≥ k) = P (TPλ ≥ k, TBn,p ≥ k) + P (TPλ ≥ k, TBn,p < k).

Thus,

P (TBn,p ≥ k)− P (TPλ ≥ k) = P (TBn,p ≥ k, TPλ < k)− P (TPλ ≥ k, TBn,p < k)

≤ P (TBn,p ≥ k, TPλ < k) + P (TPλ ≥ k, TBn,p < k).

Taking the modulus on both sides, we have that

|P (TBn,p ≥ k)− P (TPλ ≥ k)| ≤ P (TBn,p ≥ k, TPλ < k) + P (TPλ ≥ k, TBn,p < k).

4Since we are relating to Theorem 1.19, we are now stressing the fact that the Branching
Process starts with one only individual, by putting a 1 as subscript. However, these probabilities
are the same as in (2.4) and (2.5).
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Now, let XB
1 , X

B
2 , · · ·

i.i.d.∼ B(n, p) and let also XP
1 , X

P
2 , · · ·

i.i.d.∼ P (λ). Note that,
from equation (2.6), TBn,p ≥ k if, for any t < k, XB

1 + · · ·+XB
t 6= t− 1. Similarly,

TPλ ≥ k, if, for any t < k, XP
1 + · · ·+XP

t 6= t− 1.
Let’s focus on P (TBn,p ≥ k, TPλ < k). Since we are considering the event in

which the total progenies of the two branching processes assume a different value,
there has to be an s < k for which XB

s 6= XP
s . If there were not such a value,

then both the processes would have different total progenies. We can bound the
probability of {TBn,p ≥ k, TPλ < k}, by considering any case that may lead to a
different total progeny: this can be obtained by summing over all possible times
s < k in which the two processes are different for the first time, that is

P (TBn,p ≥ k, TPλ < k) ≤
k−1∑
s=1

P (XB
s 6= XP

s , X
B
i = XP

i , ∀i < s, TBn,p ≥ k).

Now note that the event {TBn,p ≥ k,XB
i = XP

i , ∀i < s} implies that the total

progeny of the Poisson branching process is bigger or equal than s, that is TPλ ≥ s.
Moreover, this event, {TPλ ≥ s}, is independent of the event {XB

s 6= XP
s }, since

the first one is only determined by the random variables XB
1 , . . . , X

B
s−1. Thus

P (TBn,p ≥ k, TPλ < k) ≤
k−1∑
s=1

P (XB
s 6= XP

s , X
B
i = XP

i , ∀i < s, TBn,p ≥ k)

=

k−1∑
s=1

P (TPλ ≥ s,XB
s 6= XP

s , T
B
n,p ≥ k)

≤
k−1∑
s=1

P (TPλ ≥ s,XB
s 6= XP

s )

=

k−1∑
s=1

P (TPλ ≥ s)P (XB
s 6= XP

s )

≤ λ2

n

k−1∑
s=1

P (TPλ ≥ s).

The last inequality follows from Theorem 1.11, that is, the Poisson approximation.
Now, by the same reasoning, we can say that

P (TPλ ≥ k, TBn,p < k) ≤
k−1∑
s=1

P (XB
s 6= XP

s , X
B
i = XP

i ,∀i < s, TPλ ≥ k).

In this second case, the reasoning is much more easier. Indeed, by simply noting
that, for any s ≤ k, P (TPλ ≥ k) ≤ P (TPλ ≥ s), and that {XB

s 6= XP
s , T

P
λ ≥ k} ⊆
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{XB
s 6= XP

s , X
B
i = XP

i ,∀i < s, TPλ ≥ k}, it follows that

P (TPλ ≥ k, TBn,p < k) ≤
k−1∑
s=1

P (XB
s 6= XP

s , X
B
i = XP

i ,∀i < s, TPλ ≥ k)

≤
k−1∑
s=1

P (XB
s 6= XP

s , X
B
i = XP

i , ∀i < s, TPλ ≥ s)

≤
k−1∑
s=1

P (XB
s 6= XP

s , T
P
λ ≥ s)

≤ λ2

n

k−1∑
s=1

P (TPλ ≥ s).

Finally,

|P (TBn,p ≥ k)− P (TPλ ≥ k)| ≤ P (TBn,p ≥ k, TPλ < k) + P (TPλ ≥ k, TBn,p < k)

≤ 2λ2

n

k−1∑
s=1

P (TPλ ≥ s)

≤ 2kλ2

n
= O(k/n) = o(1),

from which the result easily follows.
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The phase transition

After the first two chapters, in which we introduced all the tools necessary
for the analysis of random graphs, we are now ready in this third chapter to
work on the main theme of the dissertation: the phase transition of the largest
component size of random graphs. We will always consider in this chapter a
binomial random graph G(n, c/n), where n ∈ N and c ∈ (0, n).1 In the first
section we will describe how the components of a random graph are explored,
while the second one will consist of a gentle discussion about the phase transition,
followed by a simple simulation. At the end of the section, however, the result of
the phase transition will be formalized and we will state the main theorem of the
dissertation. In the third section we will relate the size of the largest component
to another quantity: this will become handy during the proof of Theorem 3.1,
which will be developed in the fourth and the fifth sections. Finally, in the last
section we will show which is the size of the largest component in the critical
case. The whole chapter is mainly based on [5].

3.1 The exploration of the components

Since the main focus of this section is on the components of a random graph, we
have to introduce some notations about them. First of all, from now on, we will
consider the vertex set to be labeled with a subset of the integer set: that is,
vertices are 1, 2, 3, . . . and so on. We will also denote the component of vertex v
by C(v), and its size by |C(v)|. The size of the largest component of a random
graph, which is the object of main interest, is defined as 2

|Cmax| = max
v∈{1,...,n}

|C(v)|. (3.1)

We can now describe the procedure of exploration. We have a graph with n
vertices and we start by looking at the vertex with label 1. If this vertex has
some incident edges, it means that |C(1)| > 1 and, thus, vertex 1 has some

1It is not mandatory to exclude the cases in which c = 0 or c = n. However, they correspond,
respectively, to the degenerate cases of a graph with no edges and of a complete graph.

2Note that equation 3.1 does not necessarily identify uniquely the largest component, since
there may be more components with the biggest number of vertices. It is possible to make the
definition unique by requiring Cmax to be the cluster containing the vertex with the smallest
label among the components with maximal size.

30
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neighbors. We can think of the neighbors of vertex 1 as like the first generation
of a branching process with root vertex 1. So, after that, we choose one of
the neighbors of vertex 1 and we look at its neighbors, without considering the
neighbors of 1 and 1 itself. We can think of the found vertices at this step like
a part of the second generation of the branching process with root 1. At this
point, we can use one of the two algorithms introduced in section 2.3, in order
to pick the next vertices to look at, between those we have already seen. The
process can go on in this fashion until there are vertices that we have already
seen, but of which we haven’t look at their neighbors. Once we have looked at
all the vertices that are in some generation of the branching process with root 1,
it means that we have fully explored a component of the random graph. At this
point, we have to pick the vertex with the lowest label between the ones available
and start a new exploration, only considering vertices not in C(1), and so on. In
order to understand the process, we do the exploration on the graph of Figure
(3.1). Figure (a) shows a random graph, in which vertex 1 is chosen, in order to
look at its neighbors. This vertex is colored in red: this color will represent the
vertex that are seen in the first component, while yellow corresponds to vertices
that are not seen yet. In figure (b) is shown the result of the first exploration,
that is, the neighbors of vertex 1 (vertices 3, 5 and 7). At this point, vertex
3 is considered: however, no yellow vertices are neighbors of this vertex and
so nothing happens. Then we look at vertex 5 and we can notice that vertex
2 is yellow and it is a neighbor of 5: for this reason in figure (c) it becomes
red. Vertices 7 and 2 do not have any yellow neighbor and so the exploration of
C(1) ends. Figure (e) shows the tree that is related to the exploration of the
first component of the random graph: the root vertex is 1, the first generation
consists of vertices 3, 5 and 7, which are the neighbors of 1, while in the second
one there is only vertex 2. It does not matter if in the random graph there are
some edges between the vertices that belongs to the first generation: indeed,
when we look at one of them, the others are already red and, for this reason, it
is not significant the presence or less of an edge joining them. After completing
the exploration of the first component, we pick the yellow vertex with the lowest
index, which, in this case, is 4, and we start the exploration of its component
(denoted by the color blue). Figure (d) shows the final result of the exploration
of the components with the blue vertices 4 and 8 in the second component and
vertex 6 in the third one with a green color.

The one just described is the general procedure of exploration of the compo-
nents. However, we can relate it to the random-walk perspective of branching
processes and use the same nomenclature active-neutral-inactive for the ver-
tices.3 We also specialize now to the binomial model of random graphs, since
the description above is true for any kind of graph.

Consider a graph G in which all the vertices are considered neutral, except
for vertex 1, which is the only one active: so we are considering S0 = 1, where S
represents the number of active vertices, as in section 2.3. Then, we look at its
neighbors: the number of vertices that are joined through an edge to 1 is the
result of a binomial random variable with parameters (n− 1, c/n), since we have
n−1 possible neighbors (neutral vertices), each of them having a probability c/n

3In [12] the exploration of the components works in the same way but a different nomen-
clature is used. In particular the authors denote with a name also the edges of the graph,
depending on the kind of vertices that they join. However, this kind of notation is a little bit
harder and redundant: for this reason the notation of [5] is preferred.
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(a) First step (b) Second step

(c) Third step (d) Last step

(e) Tree of the exploration of C(1)

Figure 3.1: Steps of the exploration of the components.

of being joined to 1. We denote with X1 this binomial random variable. In the
example of Figure (3.1), X1 ∼ B(7, c/n), which takes value 3 (vertex 1 has three
neighbors)4. Moreover, the neighbors of 1 become active vertices, while vertex 1
becomes inactive: thus, in the example S1 = 3, where S1 = X1 − S0 represents
the number of active vertices after the first exploration. At this point, we have to
pick one of the active vertices and see if there are some of its neighbors between
the neutral vertices. In this case, the result comes from the binomial random
variable X2 with parameters (n − X1 − 1, c/n). Again, the number of active

4We are not interested in the value of the second parameter c/n at the moment.
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vertices is updated and the chosen vertex becomes inactive. In the example, the
first parameter of X2 is 4 and, if vertex 3 is chosen, it has not any neighbor in
the neutral set: thus S2 = 2. Clearly, we can represent this procedures as a
random walk, by simply noting that

S0 = 1, Si = Si−1 +Xi − 1, (3.2)

where Si−1 is the set of active vertices before the i-th exploration and Xi

represents the result of the i-th exploration: it is a binomial random variable
with parameters (n − (X1 + · · ·Xi−1) − 1), c/n). We can also write the first
parameter of Xi as n− Si−1 − (i− 1), since X1 + · · ·Xi−1 = Si−1 − (i− 1) + 1,
and note that this simply corresponds to the size of the neutral set.

The process of exploration of the first component continues in this way, until
there are active vertices to explore. So |C(1)| = inf{t : St = 0}, which is equal to
the T defined in equation (2.6): thus the size of the first component corresponds
to the total progeny of the related branching process. Once the first component
is fully explored, we have to pick one vertex in the neutral set, switch its state
to active and continue with the exploration of the other components.

However, when a component is fully explored, there is a little issue with the
number of active vertices: for this reason we define

S1
i = Si − |{components fully explored after the i-th exploration}|

which is simply the number of active vertices with a correction term that
corresponds to the number of components fully explored. This new quantity is
necessary to maintain the random walk construction of the exploration, after the
first component is fully explored: indeed, while the first component is explored,
S1
i = Si and, thus, we can just replace Si with S1

i in (3.2). However, this is no
longer true for the other components. Consider Si: when Si = 0, a component is
fully explored and there are no more active vertices to look at. However, we need
a new active vertex to start a new component exploration, that is, Si should be
equal to 1. This problem is circumvented by considering S1: indeed, when Si = 0
for the first time, automatically the neutral vertex with lowest index switch its
state and the number of components fully explored becomes one. In this way,
we have an active vertex to look at, the value of S1

i remains 0, as it should be,
and we can extend the random walk construction to the exploration of all the
components. Note that now the second component will be fully explored when
S1
i = −1 for the first time, while the third one is obtained when S1

i = −2 and so
on. Let also k be the lowest-labeled neutral vertex after the first component is
fully explored, then the size of the second component is

|C(k)| = inf{t : S1
t = −1} − |C(1)|.

In Figure 3.2 we can see a graph that represents the process of exploration: dots
corresponds to the steps in which end a component’s exploration.

We can also summarize the various steps of the exploration process in a table,
as shown in Table 3.1. The first column represents the number of the exploration
(in the first line there is a zero to consider the initial state), while in the second
one we can find the label of the vertex chosen for the exploration. The third one
consists of the number of active vertices after the i-th exploration: in two cases
we can note the value 0/1, which is caused by the problem that arises when a
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Figure 3.2: Representation of a graph exploration.

Vertex |Si| |Ni| |Ii| Num. Comp. |S1
i |

0 1 7 0 0 1
1 1 3 4 1 0 3
2 3 2 4 2 0 2
3 5 2 3 3 0 2
4 2 1 3 4 0 1
5 7 0/1 2 5 1 0
6 4 1 1 6 1 0
7 8 0/1 0 7 2 -1
8 6 0 0 8 3 -1

Table 3.1: Summary of the state of the vertices during the exploration

component is fully explored. The fourth and the fifth ones represent, respectively,
the number of neutral and inactive vertices after the i-th exploration, while the
sixth column contains the number of components fully explored. Finally, the
last column consists of the number of the so-called corrected-active vertices.

Before finishing this first section, there is an observation to be made. The
random variables that represent the family size in a branching process are a
sequence of i.i.d. random variables. For this reason, generations far from the root
have the same probability of generations close to the root of having a certain
number of children. This does not happen in the exploration of a random graph.
First of all, the binomial random variables are not independent and are not
identically distributed: for example, the first parameter of X2 is n − X1 − 1,
which obviously depends on the value of X1. Moreover, the number of neutral
vertices decreases as the number of exploration increases: for this reason, it is
less probable that a vertex, which is explored quite late, has many neighbors.
This effect is also know as depletion of points.

3.2 Size of the largest component

In the previous chapter, and in particular in Section 2.2, we noticed a phase
transition for the mean value of the generation size of branching processes. There



Chapter 3. The phase transition 35

we stated that the importance of branching processes in this context was all
about this shared behavior with the largest component size of random graphs.
We are now ready to introduce this characteristic behavior for random graphs
too. Consider a binomial random graph with parameter (n, c/n): depending on
the value of c, the size of the largest component varies with a phase transition
behavior. If c < 1 (subcritical phase), the size of the largest component is
of the order of ln(n). This means that there are many components of small
dimension: for this reason the random graph is defined sparse. On the contrary,
if c > 1 (supercritical phase), the size of the largest component is of the order
of n: there is a very big component, which contains a positive proportion of
the vertices. We will also prove that, in the supercritical phase, there are no
other components with sizes of order between ln(n) and n: thus, the largest
component is much bigger than the others. For this reason, we call the largest
component the giant component, and, moreover, we also refer to this phase
transition as the emergence of the giant component.

Note that, the mean number of neighbors of a vertex in the graph considered
is (n− 1) cn , which asymptotically is equal to c. This means that, if the mean
number of edges incident to a vertex is less than one, the graph is in the subcritical
phase, while if it is bigger than one, the graph is in the supercritical phase. This
last consideration allows us to link again the exploration of a random graph to
branching processes. Indeed, if the expected number of neighbors for a vertex
in a random graph is less than one, this is also true for the related branching
process. However, this means that, on average, every individual of the branching
process will generate less than one offspring, causing the extinction of the process.
On the contrary, when we are in the supercritical phase, every individual of the
related branching process will have, on average, more than one offspring: in
this situation we know that there is a certain probability that the process does
not die out. Because of the depletion of points effect, this cannot happen for a
random graphs exploration and its related branching process. However, we can
deduce that, in this setting, it is probable to find a related branching process
with many generations, which corresponds to a large component.

We can think of the random graph process in order to understand in a better
way the behavior of the size of the largest component. Recall that, the random
graph process considers a sequence of graphs, the first of them with no edge,
and then it adds new edges, one at a time. We can easily see that this process
considers a uniform model of random graphs, since the number of edges is fixed
at every step. Note also that the expected number of edges in a binomial model
is
(
n
2

)
c
n : so we can relate the two models by considering c = 2M

n−1 ≈
2M
n , where

M is the number of edges of the uniform model. It is important to underline
that in this observation we are considering the mean number of edges of the
binomial random graph. In the random graph process the value of M increases
of a unity at every step: so until the value of M is such that c < 1, we are in
the subcritical phase. In this phase, at every step one edge is added: however,
the number of edges is small respect to the number of vertices, and, so, it is
hard that a high number of edges joins vertices to the same component. It is
more likely that the new edge joins vertices that do not belong to any "larger"
component. However, as the number of edges increases, it is possible to create
small assemblages of vertices, each of them of small dimension. When the number
of edges is large enough to make c close to one, the graph has many components
of size close to ln(n) and at this point it is more likely that an edge does not
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joins single vertices, but vertices that belong to different larger components.
This in particular happens when c = 1 and we are in the critical phase. We
will show in the last section that, in this case, the size of the largest component
is of the order n2/3. So, as said, in this phase it is easier that two components
of order ln(n) are joined, with the result that, when we reach the supercritical
phase, many of these components are now a single giant component.

We now simulate some random graphs in order to show the phase transition
behavior. Every graph will consists of 1000 vertices and we will consider four
different edge probabilities.

1st 2nd 3rd 4th

1/2 9 6 6 5
3/4 14 12 10 9
5/4 359 44 11 8
3/2 562 20 10 10

Table 3.2: Size of largest components.

(a) c=1/2 (b) c=3/4

(c) c=5/4 (d) c=3/2

Figure 3.3: Simulation of random graphs with different edge probabilities
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In Table 3.2 are summarized the results of the simulation. In the subcritical
phase, which corresponds to the first two lines, we can notice that the largest
component size (first column) is quite small and is comparable to the value
ln(1000) ≈ 7. Moreover, the values of the sizes of the other components (other
columns) is close to the largest one in both cases. This fact, as expected, does
not happen in the supercritical phase (last two rows), in which, clearly, there is
a component much larger than the others. In Figure 3.3, is proposed a visual
representation of the graphs simulations. Red dots belongs to the largest compo-
nent: in cases (a) and (b) the component is really small and does not distinguish
itself from the others. In the two other cases, the largest component is easy to
identify and occupies a great portion of the graph. It is important to underline
that this simulation is not the result of a random graph process, but simply
the realizations of some binomial random graphs with different edge probabilities.

We are now ready to state the Theorem about the phase transition of the
largest component size.

Theorem 3.1. Let G be a binomial random graph with parameters (n, c/n) and
let also IP = IP (1) = c− 1− log(c) be the rate deviation function of a Poisson
random variable with mean c.
If c < 1 and a > I−1

c , then

lim
n→∞

P (|Cmax| ≥ a ln(n)) = 0, (3.3)

while if c < 1 and b < I−1
c , we have that

lim
n→∞

P (|Cmax| < b ln(n)) = 0. (3.4)

If c > 1 and βc is the survival probability of a Poisson branching process with
mean c, then for every v ∈ ( 1

2 , 1)

lim
n→∞

P (| |Cmax| − βcn| > nv) = 0 (3.5)

equations (3.3) and (3.4) concern the subcritical regime and, together, they
imply that, with a probability that tends to one, the value of the size of the
largest component is in the interval [a, b], which includes the value I−1

c ln(n).
On the contrary, in the supercritical phase, with a probability that tends to one,
the number of vertices in the largest component belongs to an interval which
includes βcn, with amplitude 2|nv − βcn|.

3.3 Another representation of the largest com-
ponent size

In the next two sections we will prove the fact that the largest component is of
a certain size, depending on the value of c. This proof will be based largely on a
different representation of the largest component, that we now introduce. Let

|C≥k| =
n∑
v=1

1{|C(v)|≥k} (3.6)
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denote the number of vertices that belongs to components of size at least k,
where 1 is the indicator function, defined as

1{|C(v)|≥k} =

{
1 if |C(v)| ≥ k
0 if |C(v)| < k.

The following theorem shows the relationship between this new quantity and
the size of the largest component.

Theorem 3.2. Let |C≥k| be defined as in equation (3.6) and let k < n, k, n ∈ N,
then

|Cmax| = max{k : |C≥k| ≥ k}. (3.7)

Moreover
{|Cmax| ≥ k} = {|C≥k| ≥ k}. (3.8)

Proof. If |Cmax| < k, then |C(v)| < k for every vertex v and thus |C≥k| = 0.
On the contrary, if |Cmax| ≥ k, then |C(v)| ≥ k for at least k vertices and thus
|C≥k| ≥ k. For this reason, while k ≤ |Cmax|, the value of |C≥k| ≥ k, but as
soon as the value of k exceed the size of the largest component |C≥k| = 0: thus
equation (3.7) follows.

To prove (3.8), we have to show that if |C≥k| ≥ k =⇒ |Cmax| ≥ k, since we
have already proved the other direction. However, by definition, the presence of
more than k vertices in components of size at least k implies that the size of the
largest component is at least k.

Now, we compute the first moment of the quantity |C≥k| and two bounds of
its second moment.

Theorem 3.3. Let |C≥k| be defined as in equation (3.6) and c/n be the edge
probability of a binomial random graph with n vertices. Then, for k, n ∈ N with
k < n,

E(|C≥k|) = nP (|C(v)| ≥ k), (3.9)

V ar(|C≥k|) ≤ nE
(
|C(v)|1{|C(v)|≥k}

)
, (3.10)

V ar(|C≥k|) ≤ (ck + 1)nE
(
|C(v)|1{|C(v)|<k}

)
. (3.11)

Proof. For the expectation, note that

E(|C≥k|) = E

(
n∑
v=1

1{|C(v)|≥k}

)

=

n∑
v=1

E
(
1{|C(v)|≥k}

)
=

n∑
v=1

P (|C(v)| ≥ k)

= nP (|C(v)| ≥ k) .
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Now, for the proof of equations (3.10), let’s start by considering the definition of
the variance:

V ar(|C≥k|) = E

( n∑
v=1

1{|C(v)|≥k}

)2
− E( n∑

v=1

1{|C(v)|≥k}

)2

= E

( n∑
v=1

1{|C(v)|≥k}

) n∑
j=1

1{|C(j)|≥k}


−

(
n∑
v=1

P (|C(v)| ≥ k)

)2

= E

 n∑
v,j=1

1{|C(v)|≥k,|C(j)|≥k}


−

(
n∑
v=1

P (|C(v)| ≥ k)

) n∑
j=1

P (|C(j)| ≥ k)


=

n∑
v,j=1

[P (|C(v)| ≥ k, |C(j)| ≥ k)− P (|C(v)| ≥ k)P (|C(j)| ≥ k)] .

(3.12)

Now, by the law of total probability we can note that

P (|C(v)| ≥ k, |C(j)| ≥ k) = P (|C(v)| ≥ k, {v, j connected})
+ P (|C(v)| ≥ k, |C(j)| ≥ k, {v, j not connected}),

from which we can rewrite the variance as

V ar(|C≥k|) =

n∑
v,j=1

[P (|C(v)| ≥ k, {v, j connected})

+ P (|C(v)| ≥ k, |C(j)| ≥ k, {v, j not connected})
− P (|C(v)| ≥ k)P (|C(j)| ≥ k)]

≤
n∑

v,j=1

P (|C(v)| ≥ k, {v, j connected}),

since

P (|C(v)| ≥ k, |C(j)| ≥ k, {v, j not connected})
≤ P (|C(v)| ≥ k, |C(j)| ≥ k)

≤ P (|C(v)| ≥ k)P (|C(j)| ≥ k).
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Finally, we can deduce that, using again the properties of the indicator function,

V ar(|C≥k|) ≤
n∑

v,j=1

P (|C(v)| ≥ k, {v, j connected})

=

n∑
v,j=1

E
(
1{|C(v)≥k|}1{j∈C(v)}

)

=

n∑
v=1

E

1{|C(v)|≥k}

n∑
j=1

1{j∈C(v)}


=

n∑
v=1

E
(
|C(v)|1{|C(v)|≥k}

)
= nE

(
|C(v)|1{|C(v)|≥k}

)
Consider now equation (3.11) and define

|C<k| =
n∑
v=1

1{|C(v)<k|}.

Then, clearly |C<k| = n− |C≥k| and thus V ar(|C<k|) = V ar(|C≥k|). For this
reason, we will prove that

V ar(|C<k|) ≤ (ck + 1)nE
(
|C(v)|1{|C(v)|<k}

)
.

By the same reasoning developed to obtain (3.12), we can derive that

V ar(|C<k|)
n∑

v,j=1

[P (|C(v)| < k, |C(j)| < k)− P (|C(v)| < k)P (|C(j)| < k)] ,

and again using the law of total probability, we can write

V ar(|C<k|) =

n∑
v,j=1

[P (|C(v)| < k, |C(j)| < k, {v, j not connected})

− P (|C(v)| < k)P (|C(j)| < k)]

+

n∑
v,j=1

[P (|C(v)| < k, |C(j)| < k, {v, j connected})]

(3.13)

Now note that, by the same reasoning as the one developed to derive equation
(3.10), we can write the second sum of the right-hand side of (3.13) as

n∑
v,j=1

[P (|C(v)| < k, |C(j)| < k, {v, j connected})] = nE
(
|C(v)|1{|C(v)|<k}

)
On the contrary, for the first sum of the right-hand side of (3.13), note that

P (|C(v)| < k, |C(j)| < k, {v, j not connected}) =

k−1∑
i=1

P (|C(v)| = i, |C(j)| < k, {v, j not connected}).



Chapter 3. The phase transition 41

Now, consider P (|C(v)| = i, |C(j)| < k, {v, j not connected}): by the factoriza-
tion theorem, we can write this probability as

P (|C(v)| = i, |C(j)| < k, {v, j not connected}) =

P (|C(v)| = i)P ({v, j not connected} | |C(v)| = i)

P (|C(j)| < k | {v, j not connected}, |C(v)| = i).

Moreover,

P (|C(v)| = i, |C(j)| < k, {v, j not connected}) ≤
P (|C(v)| = i)P (|C(j)| < k | {v, j not connected}, |C(v)| = i). (3.14)

The second probability on the right-hand side of (3.14) corresponds to the
probability that the size of the component containing vertex j is less than k in
a random graph with n− i vertices and edge probability c/n. We denote this
event by P (|Cn−i(j)| < k) and thus

P (|C(j)| < k | {v, j not connected}, |C(v)| = i)

= P (|Cn−i(j)| < k)

= P (|C(j)| < k) + P (|Cn−i(j)| < k)− P (|C(j)| < k).

We can now construct a coupling between these two random graphs. Take
the random graph with n − i vertices and add the vertices {n − i + 1, . . . , n}:
then we will draw an edge between vertices s and t with probability c/n, where
s ∈ {n− i+ 1, . . . , n} and t ∈ {1, . . . , n}. This is a coupling and, in particular,
in this setting

P (|Cn−i(j)| < k)− P (|C(j)| < k) = P (|Cn−i(j)| < k, |C(j)| ≥ k). (3.15)

In order to prove equation (3.15), call A = {|Cn−i(j)| < k} andB = {|C(j)| ≥ k}:
then Bc = {|C(j)| < k} and P (|Cn−i(j)| < k, |C(j)| ≥ k) = P (A ∩B). By the
basic rules of probability, we can derive that

P (A ∩B) = P (A) + P (B)− P (A ∪B).

However, P (A ∪B) = 1 since it contains any possible size of the component of
the random graph; thus

P (A ∩B) = P (A) + P (B)− 1 = P (A)− P (Bc),

as required.
Now consider the event {|Cn−i(j)| < k, |C(j)| ≥ k}: if |Cn−i(j)| < k, then

|C(j)| ≥ k if and only if at least one of the vertices {n− i+1, . . . , n} is connected
to one of the vertices belonging to the component of j. This happens, at most,
with probability ikc/n, and thus

P (|Cn−i(j)| < k)− P (|C(j)| < k) ≤ ikc

n
.
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Therefore,

V ar(|C<k|) ≤ nE
(
|C(v)|1{|C(v)|<k}

)
+

 n∑
v,j=1

k−1∑
i=1

P (|C(v)| = i)

(
ikc

n
+ P (|C(j)| < k)

)
− P (|C(v)| < k)P (|C(j)| < k)

]
= nE

(
|C(v)|1{|C(v)|<k}

)
+

n∑
v,j=1

k−1∑
i=1

ikc

n
P (|C(v)| = i)

= nE
(
|C(v)|1{|C(v)|<k}

)
+
ck

n

n∑
v,j=1

E
(
|C(v)|1{|C(v)|<k}

)
= (ck + 1)nE

(
|C(v)|1{|C(v)|<k}

)
.

3.4 The subcritical regime

In this section, we are going to prove equations (3.3) and (3.4) of Theorem 3.1.

Proof of equation (3.3)

In order to prove the first equation, we will make the following steps:

1. We will show that the size of a component of a binomial random graph
with parameters (n, c/n) is dominated by the the total progeny of binomial
branching process with the same parameters;

2. The total progeny of the binomial branching process will be bounded, using
the Chernoff bound;

3. We will exploit the relationship with |C≥k| and Markov inequality to
compute another bound for P (|Cmax| ≥ a ln(n)), which at the limit tends
to zero.

For the first point, let Ni denote the number of neutral vertices in the random
graph after i explorations, and let Xi ∼ B(Ni−1, c/n) be the number of vertices
that become active after the i-th exploration. If we let Yi ∼ B(n−Ni−1, c/n),
then

Xbp
i = Xi + Yi

dominates Xi, as shown in Example 1.15, since Xbp
i ∼ B(n, c/n). Moreover, the

total progeny of a binomial branching process with parameters (n, c/n), denoted
by TBn,c/n, can be defined as

inf{i : Sbpi = Xbp
1 + · · ·Xbp

i − (i− 1) = 0},

where Xbp
1 , . . . , Xbp

i
i.i.d.∼ B(n, c/n). If we let Si be the number of active vertices

in the random graph after the i-th exploration, with the exploration process
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starting from 1, then5

P (|C(1)| > k) = P (Si > 0,∀i ≤ k).

However, since Xi is dominated by Xbp
i , we have that

P (Si > 0,∀i ≤ k) ≤ P (Sbpi > 0,∀i ≤ k) = P (T > k).

Finally, since the process of exploration can start from any vertex, and not
necessary from the one labeled 1, the above argument is true for any vertex, so
that

P (|C(v)| > k) ≤ P (TBn,c/n > k). (3.16)

Now, we can start proving point number two, by simply noting that

P (TBn,c/n > k) = P (Sbpi > 0,∀i ≤ k)

= P (Xbp
1 > 0) · · ·P (Xbp

1 + · · ·Xbp
k > k − 1)

≤ P (Xbp
1 + · · ·Xbp

k ≥ k) = P (Sbpk ≥ k).

Since Sbpk ∼ B(nk, c/n) and using the Chernoff bound (Theorem 1.7), it follows
that

P (Xbp
1 + · · ·Xbp

k ≥ k) ≤ e−kIB(1),

where IB is the rate function of a Bernoulli random variable with mean c/n. By
Proposition 1.6, in which we related the rate function of binomial and Poisson
random variables, we have that

P (Xbp
1 + · · ·Xbp

k ≥ k) ≤ e−kIP ,

with IP = c− 1− ln(c). If we link the first two points, we can deduce that

P (|C(v)| > k) ≤ e−kIP . (3.17)

We can now consider the third point of the proof: because of Theorem 3.2, we
have that, for a > I−1

P ,

P (|Cmax| ≥ a ln(n)) = P
(
|C≥a ln(n)| ≥ a ln(n)

)
. (3.18)

Since IP > 0 , it is true that for n large enough a ln(n) ≥ 1, so that using Markov
inequality and equation (3.9)

P
(
|C≥a ln(n)| ≥ a ln(n)

)
≤ P

(
|C≥a ln(n)| ≥ 1

)
≤ E

(
|C≥a ln(n)|

)
= nP (|C(v)| ≥ a ln(n)) (3.19)

5We have required a specific point in which the process of exploration starts, so that we are
focusing only on the first component exploration. In this way it is possible to use the variable
Si and not S1

i .
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Finally, from equations (3.17), (3.18) and (3.19) we can conclude that

P (|Cmax| ≥ a ln(n)) ≤ nP (|C(v)| ≥ a ln(n))

≤ ne−a ln(n)IP

= neln(n)−aIP

= n1−aIP

→
n→∞

0

since aIP > 1.

Proof of equation 3.4

The proof of this second equation is a little more complicated than the one
just developed: for this reason, it is hard to give an outline of the procedure.
However, after a few steps, it will be clear how the proof works.

Note that, from the proof of Theorem 3.3, it can be deduced that

P (|Cmax| < b ln(n)) = P
(
|C≥b ln(n)| = 0

)
, (3.20)

and by Chebyshev inequality, it follows that

P
(
|C≥b ln(n)| = 0

)
≤
V ar

(
|C≥b ln(n)|

)
E
(
|C≥b ln(n)|

)2 . (3.21)

At this point, there are two major tasks in this proof: find an upper bound for
the variance and a lower bound for the expectation, both of them as a function
of n, in order to find a new bound for P (|Cmax| < b ln(n)).

Firstly, we consider the bound of the variance, which is much more simpler
than the one for the expectation. From equation (3.10)

V ar
(
|C≥b ln(n)|

)
≤ nE

(
|C(v)|1{|C(v)|≥b ln(n)}

)
.

Now recall that the expectation of a discrete random variable X taking only
non-negative values can also be defined as

E(x) =

∞∑
i=1

P (X ≥ i),

since

∞∑
i=1

P (X ≥ i) =

∞∑
i=1

∞∑
j=i

P (X = j) =

∞∑
j=1

j∑
i=1

P (X = j)

=

∞∑
j=1

jP (X = j) = E(X).
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Thus, calling kn = [b ln(n)] the integer part of b ln(n), we have that

V ar
(
|C≥b ln(n)|

)
≤ n

n∑
i=kn

P (|C(v)| ≥ i)

= n

n∑
i=kn

P (|C(v)| > i− 1)

≤ n

n∑
i=kn

e−(i−1)IP ,

where the last inequality follows from (3.17). Exploiting some of the properties
of the sums, we can deduce that

n∑
i=kn

e−(i−1)IP =

n−1∑
s=kn−1

e−sIP =

n−1∑
s=0

e−sIP −
kn−2∑
s=0

e−sIP

=
1− e−nIP
1− e−IP

− 1− e−(kn−1)IP

1− e−IP

=
e−(kn−1)IP − e−nIP

1− e−IP

≤ e−(kn−1)IP

1− e−IP

≈ e−(b ln(n)−1)IP

1− e−IP

=
n−bIP e−IP

1− e−IP
.

Thus, the upper bound for the variance is

V ar
(
|C≥b ln(n)|

)
≤ n1−bIP eIP

1− e−IP
. (3.22)

Now, we have to consider the expectation of |C≥b ln(n)|. From equation (3.9)
we know that

E
(
|C≥b ln(n)|

)
= nP (|C(v)| ≥ b ln(n)) .

This means that we can bound this expectation, by finding a lower bound for
the probability that the size of a component of the random graph is bigger or
equal to b ln(n). This is quite a hard task, which we will achieve according to
the following steps:

1. The size of a component of the random graph will be compared to the
progeny of a binomial branching process with parameters (n − kn, c/n),
where kn = [b ln(n)];

2. We will exploit the link between binomial and Poisson branching processes
and the law of the mass distribution of the total progeny for a Poisson
branching process, denoted with TP , to compute P (TP ≥ kn);

3. Using Stirling’s formula, we will be able to express the probability that
TP ≥ kn, as a function of n, deriving in this way the desired lower bound.
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We now start with the first point. To do this, let τk = min{i : Ni ≤ n − k},
where Ni is the number of neutral vertices after i explorations, and consider
a process of exploration starting from vertex v. As long as Si > 0, where Si
denotes the number of active vertices after the i-th exploration, we are exploring
the component of v, which is the first one. If Si > 0, for every i ∈ [0, k− 1], then
τk ≤ k−1, since, after k−1 explorations, there are at least one active vertex and
k − 1 inactive vertices. At τk, there are are at least k − τk active vertices, since
Sτk = n− τk −Nτk ≥ k − τk. Moreover, Si > 0 for at least a further k − τk − 1
steps, since Si decreases by at most a unity at every step. Hence

P (Si > 0, 0 ≤ i ≤ k − 1) = P (St > 0, 0 ≤ i ≤ τk, τk ≤ k − 1).

Now, let Xbp
1 , . . . , Xbp

i
i.i.d.∼ B(n−k, c/n) and, for i ≤ τk−1, let also Y1, . . . , Yi be

a sequence of binomial random variables with parameters (Ni−1 − (n− k), c/n);
then

Xi = Xbp
i + Yi (3.23)

is a binomial random variable with parameters (Ni−1, c/n), which dominates
Xi. Moreover, the sequence X1, . . . , Xi, as defined in (3.23) represents the
exploration of the first component of a random graph, as long as i ≤ τk − 1 and
τk ≤ k − 1. Now note that, calling Sbpi = Xbp

1 + · · ·+Xbp
i ,

P (|C(v)| ≥ k) = P (Si > 0, 0 ≤ i ≤ τk, τk ≤ k − 1)

≥ P (Sbpi > 0, 0 ≤ i ≤ τk, τk ≤ k − 1)

≥ P (Sbpi > 0, 0 ≤ i ≤ k − 1, τk ≤ k − 1)

= P (Sbpi > 0, 0 ≤ i ≤ k − 1) = P (TBn−k,c/n ≥ k),

since {Sbpi > 0, 0 ≤ i ≤ k − 1} ⇒ {Si > 0, 0 ≤ i ≤ k − 1} ⇒ {τk ≤ k − 1}, and
where TBn−k,c/n denotes the total progeny of a binomial branching process with

parameters (n− k, c/n). Since the exploration of the random graph can start
from any vertex, the result is true for any vertex v. Thus, we can write

P (|C(v)| ≥ kn) ≥ P (TBn−kn,c/n ≥ kn). (3.24)

At this point (the second one of the list above), we can exploit the relationship
between Poisson and binomial branching processes. If we let TPcn be total progeny

of a Poisson branching process with mean cn = cn−knn , then, by Theorem 2.10,
it follows that

P (TBn−kn ≥ kn) = P (TPcn ≥ kn) + o(1).

Moreover, because of Theorem 2.9, we have that

P (TPcn ≥ kn) =

∞∑
s=kn

P (TPcn = s) =

∞∑
s=kn

e−scn(scn)s−1

s!
.

We now introduce Stirling’s formula. In its most common formulation, this
equation states that

lim
n→∞

√
2πn

(
n
e

)n
n!

= 1,
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which can also be written as,

n! =
(n
e

)n√
2πn(1 + o(1)).

Now, using Stirling’s formula and recalling all the results obtained in this part of
the proof, we can notice that, calling IPn the rate function of a Poisson random
variable with mean cn,

P (|C(v)| ≥ kn) ≥
∞∑

s=kn

e−scn(cn)s−1es√
2πs3

(1 + o(1))

=
1

cn

∞∑
s=kn

e−sIPn√
2πs3

(1 + o(1))

≥ 1

cn

∞∑
s=kn

e−sIPn√
2πk3

n

(1 + o(1))

since
e−sIPn = e−s(cn−1−ln(cn)) = e−scne−scsn.

Moreover, we can notice that cn < 1, since c < 1 and n−kn
n < 1, and that

kn = b ln(n) > 1 for n large enough, so that

P (|C(v)| ≥ kn) ≥ 1

cn

∞∑
s=kn

e−sIPn√
2πk3

n

(1 + o(1))

≥ e−knIPn (1 + o(1)).

Let’s consider the rate function IPn : we analyze now its relationship with Ic. By
definition,

IPn = cn − 1− ln(cn)

= c
n− kn
n

− 1− ln

(
c
n− kn
n

)
= c

n− kn
n

− 1− ln(c) + ln

(
n− kn
n

)
→

n→∞
c− 1− ln(c) = IP .

This result can also be written as IPn = IP + o(1). Thus,

P (|C(v)| ≥ kn) ≥ e−knIPn (1 + o(1))

≈ e−b ln(n)IP (1+o(1))

= n−bIP (1+o(1)).

In this way, we have found the lower bound for the expectation of |C≥b ln(n)|,
which is

E
(
|C≥b ln(n)|

)
= nP (|C(v)| ≥ b ln(n)) ≥ n(1−bIP )(1+o(1)) ≥ nα, (3.25)

for any α ∈ (0, 1− aIP ), since bIP < 1. Finally, recalling equations (3.20), (3.21)
and the two bounds obtained in (3.22) and (3.25), we have that

P (|Cmax| < b ln(n)) ≤ n1−bIP−2α eIp

1− eIP
→

n→∞
0,

when we choose an α such that 2α > 1− bIP .
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3.5 The supercritical regime

We now prove equation (3.5) from Theorem 3.1, which is also known as the law
of large numbers for the giant component. The proof consists of three main parts,
which are now introduced.

• The first one shows that there are no components with size between
kn = [a ln(n)] and αn, with α < βc, that is

lim
n→∞

P (∃v : kn ≤ |C(v)| ≤ αn) = 0; (3.26)

• We will prove a slight variation of the main equation, which uses |C≥kn |
instead of the size of the largest component. The result will be

lim
n→∞

P (| |C≥kn | − βcn| ≤ nv) = 1 (3.27)

• The final step will be to use the two previous results, (3.26) and (3.27), to
deduce the law of large numbers for the giant component;

Actually, we are going to start from the final step, assuming that (3.26) and
(3.27) hold.

Note that it is always true that

|Cmax| ≤ |C≥kn | (3.28)

as long as there exists a component of size bigger than kn: but this is certainly
implied by (3.27). However, if |Cmax| < |C≥kn |, there are at least two components
with at least kn vertices. Moreover, they must have more than αn vertices, since
(3.26) is assumed to be true. Thus

|C≥kn | > 2αn. (3.29)

We also know that |C≥kn | ≤ βcn+ nv, since, from (3.27)

P (| |C≥kn | − βcn| ≤ nv) = P (−nv ≤ |C≥kn | − βcn ≤ nv)
≤ P (|C≥kn | ≤ βcn+ nv)

for large values of n. However, when 2α > βc, (3.29) is in contradiction with

|C≥kn | ≤ βcn+ nv < 2αn+ o(n).

Thus, since (3.28) holds, we must have that

|Cmax| = |C≥kn |

conditional on (3.26) and (3.27), from which the result follows.
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So, we now have to prove the two conditions from which the result is deduced
and we start with (3.26). Note that, by Markov inequality

P (∃v : kn ≤ |C(v)| ≤ αn) = P (|C≥kn | − |C≥αn+1| ≥ kn)

≤ P (|C≥kn | − |C≥αn+1| ≥ 1)

≤ E(|C≥kn | − |C≥αn+1|)
= E(|C≥kn |)− E(|C≥αn+1|)
= n (P (|C(v)| ≥ kn)− P (|C(v)| ≥ αn+ 1))

= nP (kn ≤ |C(v)| ≤ αn)

= n

αn∑
i=kn

P (|C(v)| = i)

= n

αn∑
i=kn

P (inf{i : Si = 0})

≤ n

αn∑
i=kn

P (Si = 0),

where Si denotes the number of active vertices after the i-th exploration of a
process starting at vertex v. Thus, in order to proceed we have to find the
distribution of the number of active vertices. We can do that, by finding the
distribution of Ni, the number of neutral vertices after the i-th exploration, as
will become apparent later. Recall that, by the random walk construction,

Ni = n− i− Si = n− i− Si−1 −Xi + 1,

where Xi ∼ B(Ni−1, c/n). Thus

Ni = Ni−1 −Xi ∼ Yi,

where Yi ∼ B(Ni−1, 1 − c/n). This result is true since, if X is a B(m, p) and
Y = m−X, with m ≥ 1 and p ∈ [0, 1], then Y is a B(m, 1− p). To understand
this fact, note that the probability of a certain number of successes P (Y = y)
for Y is equivalent to the probability of the same number of failures for X, since

P (Y = y) = P (m−X = y) = P (X = m− y).

Therefore, in order to obtain the same random variable is sufficient to switch
the value of the parameter. Thus, we have that Ni ∼ Yi ∼ B(Ni−1, 1 − c/n)
and we will prove that Ni ∼ B(n − 1, (1 − c/n)i). In order to do that, recall
that if N ∼ B(n, p) and S ∼ B(N, q), then, conditionally on N , S ∼ B(n, pq).
In order to understand this statement we can think of N like n coin tosses with
probability of success p and, for each trial, we throw an other coin with success
probability q. The amount of successes of S will be the cases in which both
trials ended in success and this corresponds to throwing a coin with success
probability pq n times. Now, considering Ni, we have that N0 = n − 1, thus
N1 ∼ B(n − 1, 1 − c/n) and N2 ∼ B(N1, 1 − c/n) ∼ B(n − 1, (1 − c/n)2): by
induction, the result easily follows.

Now, since Si = n− i−Ni = n− 1− (i− 1)−Ni, then

Si + (i− 1) = n− 1−Ni ∼ B(n− 1, 1− (1− c/n)i)
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In this way we have obtained the distribution of Si. Now let R ∼ B(n −
1, 1− (1− c/n)i), C ∼ B(n, 1− (1− c/n)i) and X ∼ B(n, 1− e−ic/n), then

P (Si = 0) = P (R = i− 1) ≤ P (R ≤ i− 1)

≤ P (C ≤ i) ≤ P (X ≤ i),

where the last inequality follows from the Taylor approximation in (1.8). Then,
since the exponential is an invertible transformation and applying Markov
inequality, we have that, for s ≥ 0,

P (Si = 0) ≤ P (−X ≥ −i) = P (e−sX ≥ e−si)

≤ esiE(e−sX) = esi
n∑
j=0

e−sjP (X = j)

= esi
n∑
j=0

e−sj
(
n

j

)(
1− e− icn

)j(
e−

ic
n

)n−j
= esi

n∑
j=0

(
n

j

)(
e−s

(
1− e− icn

))j(
e−

ic
n

)n−j
= esi

(
e−s

(
1− e− icn

)
+ e−

ic
n

)n
= esi

(
1−

(
1− e− icn

) (
1− e−s

))n
≤ esi−n(1−e−ic/n)(1−e−s) (3.30)

The last inequality is also true for the minimum of the exponent of the right-hand
side of (3.30): we now compute its derivative in s and we set it equal to zero.

d

ds

[
si− n

(
1− e−ic/n

) (
1− e−s

)]
= i− n

(
1− e−ic/n

)
e−s = 0.

Thus,

e−s
∗

=
i

n
(
1− e−ic/n

)
=⇒ s∗ = ln

(
n
(
1− e−ic/n

)
i

)
,

where s∗ is the minimized value (it is straightforward to check the second
derivative). We now substitute s∗ in the exponent of (3.30), so that, calling

g(i) =
n(1−e−ic/n)

i ,

s∗i− n
(

1− e−ic/n
)(

1− e−s
∗
)

=

= i ln(g(i))− n
(

1− e−ic/n
)(

1− i

n
(
1− e−ic/n

)) =

= i ln(g(i))− n
(

1− e−ic/n
)

+ i =

= −i (g(i)− 1− ln(g(i))) = −iIP (g(i))(1),
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where IP (g(i))(1) is the rate function in 1 of a Poisson random variable with
mean g(i) > 0. We need IP (g(i))(1) to be bigger than zero and this happens if
g(i) > 1. Thus, we now have to show that g(i) > 1 for some values of i.

If i
n < βc, then g(i) > 1, since

g(i) =
n
(

1− e− icn
)

i

≥
n
(
1− e−cβc

)
i

≥ ncβc
i
≥ nβc

i
> 1.

Moreover, since α < βc, then g(i) > 1 for all kn ≤ i ≤ αn.
Thus, IP (g(i))(1) > 0 for kn ≤ i ≤ αn: so we can bound it below by a strictly

positive constant K(α, c). Now, summarizing the main steps developed in this
part of the proof, we have that

P (∃v : kn ≤ |C(v)| ≤ αn) ≤ n

αn∑
i=kn

P (Si = 0)

≤ n

αn∑
i=kn

es∗i−n(1−e−ic/n)(1−e−s∗)

= n

αn∑
i=kn

e−iIP (g(i))(1)

≤ n

αn∑
i=kn

e−iK(α,c)

= n
e−knK(α,c)

1− e−K(α,c)

≈ n
e−a ln(n)K(α,c)

1− e−K(α,c)

n→∞→ 0,

for values of a large enough.

We now consider the other condition from which the main result follows, that
is (3.27). In order to prove it, we first have to relate βc to the expectation of
|C≥kn |. Recall that (3.9) states that

E(|C≥kn |) = nP (|C(v)| ≥ kn).

The probability that the size of a component is bigger than kn in the supercritical
phase is comparable to the survival probability of a Poisson branching process.
More formally we are going to show that

P (|C(v)| ≥ kn) = βc +O(kn/n) (3.31)

In order to prove (3.31), we have to find an upper and a lower bound for
P (|C(v)| ≥ kn) that coincides with βc +O(kn/n). We can find the upper bound
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using the total progeny of a binomial branching process, as done in (3.16), and
then comparing it to a Poisson branching process by Theorem 2.10, to obtain

P (|C(v)| ≥ kn) ≤ P (TBn,c/n ≥ kn) = P (TPc ≥ kn) +O(kn/n).

Then, it follows from Theorem 2.8 that

P (TPc ≥ kn) = P (TPc =∞) + P (kn ≤ TPc <∞)

= βc +O(e−knIP )

≈ βc +O(e−a ln(n)IP )

= βc +O(n−aIP )

= βc + o(1),

for a > 0, since IP > 0. Thus

P (|C(v)| ≥ kn) ≤ βc +O(kn/n). (3.32)

It is possible to find as well a lower bound for P (|C(v)| ≥ kn) using, in this case,
the result obtained in (3.24) and then, again, Theorem 2.10, to obtain

P (|C(v)| ≥ kn) ≥ P (TBn−kn,c/n ≥ kn) = P (TPcn ≥ kn) +O(kn/n).

Again, we use Theorem 2.8, to compute P (TPcn ≥ kn).

P (TPcn ≥ kn) = P (TPcn =∞) + P (kn ≤ TPcn <∞)

= βcn +O(e−knIPn )

= βcn + o(1),

where βcn is the survival probability of a Poisson Branching Process with mean
cn = cn−knn . We now have to relate βcn to βc in order to obtain the same upper
and lower bound. However, since kn = o(n), by definition of cn, we have that

βcn = βc + o(1)

Thus, we can conclude that

P (|C(v)| ≥ kn) ≥ βc +O(kn/n),

which proves, together with (3.32), equation (3.31). In this way, we deduce that

E(|C≥kn |) = nP (|C(v)| ≥ kn) = nβc + nO(kn/n) = nβc +O(kn).

We can now consider again equation (3.27) that we are trying to prove. Indeed

P (| |C≥kn | − βcn| ≤ nv) ≥ P (| |C≥kn | − βcn| ≤ nv/2)

= P (| |C≥kn | − E(|C≥kn |) +O(kn)| ≤ nv/2).

Since kn = o(nv) for any v ∈ (1/2, 1), we can simply consider P (| |C≥kn | −
E(|C≥kn |)| ≤ nv/2), which can be bounded using (3.11) and Chebyshev inequal-
ity. Thus,

P (| |C≥kn | − E(|C≥kn |)| ≤ nv/2) = 1− P (| |C≥kn | − E(|C≥kn |)| > nv/2)

≥ 1− V ar(|C≥kn |)
4n2v

≥ 1−
(ckn + 1)nE(|C(v)|1{|C(v)|<kn})

4n2v

= 1−
(ckn + 1)E(|C(v)|1{|C(v)|<kn})

4n2v−1
.
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Now note that, E(|C(v)|1{|C(v)|<kn}) can be bounded above by kn, because of
the presence of the indicator function that forces the component to have size
less than kn. Indeed,

P (| |C≥kn | − βcn| ≤ nv/2) ≥ 1− 4n1−2v(ck2
n + kn)

→
n→∞

1,

since v > 1/2 and kn = o(nδ), with δ = 1− 2v.

3.6 The critical case

We now study what happens in the case c = 1, which is also known as the
critical value. Let’s start with a simulation of a random graph with 1000 vertices
and edge probability 1/1000. Figure 3.4 shows a graph in which there are some
components of medium dimension, bigger than the ones in the subcritical regime,
but much more smaller than the giant component of the supercritical phase. In
particular, we can see a component with red vertices, the largest one, in the
middle of the graph, which is of discrete dimension and bigger than all the others.
However, the difference between the largest and the other components is not so
pronounced as in the supercritical phase. Moreover, even the components which
are not the largest one, have a bigger size than the largest component in the
subcritical phase.

Figure 3.4: Critical Random Graph

Table 3.3 shows the size of the four largest components in the simulated
random graph and confirms the observations derived from Figure 3.4.

In particular, the main interesting feature of the table is the number of
vertices in the largest component is comparable to the value n2/3 = 100, which,
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1st 2nd 3rd 4th

143 23 20 16

Table 3.3: Size of the Components in the Critical Case.

indeed is the order of the size of Cmax in the critical phase. This fact is introduced
in the following theorem.

Theorem 3.4. Let G(n, c/n) be a random graph with c = 1 + rn−1/3 and r ∈ R.
Let also b > 0, then, for w sufficiently large,

P

(
n2/3

w
≤ |Cmax| ≤ wn2/3

)
≥ 1− b

w
. (3.33)

We can notice that the mean number of neighbors of a vertex in Theorem
3.33 is not precisely 1: however, for graphs with a high number of vertices, it
tends to one. The meaning of the previous theorem is that, with a probability
close to 1, the size of the largest component is in an interval which includes the
value n2/3. The "proximity" of the probability to one depends on the width of
the interval. Note that the conclusion of this theorem is a little bit different than
the ones of Theorem 3.1: indeed, in Theorem 3.1 we proved that the probability
of the size of the largest components not to be of a certain order tends to zero.
In this case, on the contrary, we are not proving any asymptotic result: Theorem
3.33 "just" states that the probability of the size to be of the order n2/3 is
"substantially" 1.

We now start developing a proof of Theorem 3.33: however, at some stages,
we will not prove every single passage, since we want to give just a justification
of this result. The proof consists of these main steps:

1. Find an upper and a lower bound for P (|C(v)| ≥ k) using the relationship
with branching processes;

2. Exploiting the relationship between Cmax and C≥k and the upper bound
found in the first point, to derive an upper bound for P (|C(v)| > wn2/3);

3. Using the lower bound of the first point of this summary, we will find an
upper bound for P (|C(v)| < w−1n2/3);

4. Using the results of point 2 and 3, we will be able to derive the statement
of Theorem 3.33.

The first point will be the one in which we will not develop every step of the
proof. It is based on the relationship that we have used several times during
this dissertation with branching processes. For the upper bound, recall that, by
equation (3.16) and by Theorem 2.10, we have that

P (|C(v)| ≥ k) ≤ P (TBn,c/n ≥ k) = P (TPc ≥ k) + o(1).

On the contrary, for the lower bound, using equation (3.24) and again Theorem
2.10, we have that

P (|C(v)| ≥ k) ≥ P (TBn−k,c/n) = P (TPc1 ≥ k) + o(1),
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where c1 = c(n− k)/n. At this point, it is possible, exploiting some properties of
the branching processes that were not introduced in Chapter 2, to find specific
bounds for the critical phase of P (TPc ≥ k) + o(1) and P (TPc1 ≥ k) + o(1).
However, we will not discuss the derivation of these bounds here. Indeed, it is
possible to prove that

d1√
k
≤ P (|C(v)| ≥ k) ≤ d2

(
|r|n−1/3 +

1√
k

)
. (3.34)

We can now consider the second point of the summary. By the relationship
between Cmax and C≥k and by Markov inequality, we have that

P (|Cmax| > wn2/3) = P (|C≥wn
2/3

| ≥ wn2/3) ≤ E(|C≥wn2/3 |)
wn2/3

.

Now, by equations 3.34 and 3.9, we can deduce that

E(|C≥wn
2/3

|) = nP (|C(v)| ≥ wn2/3) ≤ nd2

(
|r|n−1/3 +

1√
wn2/3

)
= nd2n

−1/3

(
|r|+ 1√

w

)
= n2/3d2

(
|r|+ 1√

w

)
.

Thus,

P (|Cmax| ≥ wn2/3) ≤
n2/3d2

(
|r|+ 1√

w

)
wn2/3

=
d2

w

(
|r|+ 1√

w

)
≤ 2

d2|r|
w

. (3.35)

Fort the third point, if we let r̂ = max{|r|, 1} and C1
max be the largest component

size of a random graph with edge probability c1
n = 1−r̂n−1/3

n , then we have that

P (|Cmax| < w−1n2/3) ≤ P (C1
max < w−1n2/3),

since c1 < c. Moreover, since −r̂ ≤ −1, we can restrict the proof to values of
r ∈ (−∞, 1]. Recalling the relationship with |C≥k| and Chebyshev inequality we
can note that

P (|Cmax| < w−1n2/3) = P (|C≥w
−1n2/3

| = 0) ≤
V ar

(
|C≥w−1n2/3 |

)
E
(
|C≥w−1n2/3 |

)2 .

Thus, we have to find an upper bound for the variance and a lower bound for the
expectation. We start with the expectation and, by equation (3.34), we deduce
that

E
(
|C≥w

−1n2/3

|
)

= nP (|C(v)| ≥ w−1n2/3) ≥ n d1√
w−1n2/3

= d1

√
wn2/3.

(3.36)
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Now, we focus on the bound for the variance, and recalling the one obtained in
(3.10), it follows that

V ar
(
|C≥w

−1n2/3

|
)
≤ nE(|C(v)|1{|C(v)|≥w−1n2/3}) ≤ nE(|C(v)|).

Recalling that P (|C(v)| > k) ≤ P (TBn,c/n), one can easily deduce that it also

holds E(|C(v)|) ≤ E(T ). Thus, from equation 2.3, we have that, since r < −1,

E(T ) =
1

1− (1− rn−1/3)
=
n1/3

|r|
,

from which we can deduce that

V ar
(
|C≥w

−1n2/3

|
)
≤ n4/3

|r|
≤ n4/3. (3.37)

In this way we have found the upper bound for P (|Cmax| > w−1n2/3), which is

P (|Cmax| > w−1n2/3) ≤ n4/3

(d1
√
wn2/3)2

=
1

d2
1w

.

Finally, for the last point of the summary, we can conclude that

P

(
n2/3

w
≤ |Cmax| ≤ wn2/3

)
= 1− P

(
|Cmax| > wn2/3

)
−P

(
|Cmax| < w−1n2/3

)
≥ 1− 1

d2
1w
− 2d2|r|

w
= 1− b

w
,

with b = d−2
1 + 2d2|r|.
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