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Abstract

Nowadays decision centres are required to make choices in complex and evolving environ-
ments, described through multiple and interdependent processes with many associated
measurements. The objective of a real time decision making centre is to agree to a se-
quence of efficacious countermeasures. To achieve this it is usually necessary to integrate
opinions and information from an often diverse set of stakeholders, articulating several
competing objectives and knowledge over different domains of expertise. A collection of
decision support systems can enhance such an integration, not only ensuring that all rel-
evant evidence systematically informs policy making, but also encouraging the decision
centre to exhibit an underlying consistency across all its components and to address the
problem as a whole. In this thesis we develop a formal framework, extending standard
Bayesian methodology, enabling the judgements and the models of groups of experts to
be coherently aggregated in a unique entity. We discuss when and how it is possible to
do so and the conditions the group needs to agree upon. We call this framework inte-
grating decision support system. We then develop a variety of methodologies to enhance
such an integration, enabling integrating decision support systems to be feasibly used in
practice.

The word cloud in the following page summarises my research.
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Chapter 1

Introduction

The activity of decision making pervades everyday life of human beings. For instance, we
choose what type of food to have for dinner or what road to take to go to work. However,
not all types of decisions that we have to commit to might be as straightforward as
the ones above. For instance, deciding whether or not to shut down a nuclear source
term due to a malfunctioning on site or committing to a policy concerning climate
change to reduce CO2 emissions at world level requires an accurate reflection about
the consequences of the available courses of action. In these situations the Decision
Maker (DM) - the individual who has the responsibility, accountability and authority to
determine a decision and possibly implement it - needs to make choices in complex and
evolving environments, described through multiple and interdependent processes with
many associated measurements [Bennet and Bennet, 2009].

Empirical research has shown that humans exhibit, even in very simple situations, a
high number of inconsistencies when making decisions [Tversky and Kahneman, 1974].
Our actions can often be said to be irrational - according to some canons of rationality
that we discuss in more details in the following. Additional research has further shown
however that the number of fallacies DMs may incur in can greatly decrease if they
are properly supported during the decision making process [see e.g. Bhandari et al.,
2008]. Thinking about our everyday life, when we are faced with a decision problem
involving elements we are not familiar with, we often seek for the help of a person with
the relative expertise in the appropriate field. We say that an individual has expertise,
and therefore is an expert, if he/she has a comprehensive and authoritative knowledge
of a specific field, not possessed by many people [Caley et al., 2014].

Expert Systems (ESs), usually computer-based, aim at simulating the reasoning of ex-
perts and therefore at providing the required support to DMs by codifying expert knowl-
edge. These usually use artificial intelligence techniques to process information, learn,

1



Chapter 1. Introduction 2

reason and make predictions, thus enhancing the process of decision making. Within
the information systems’ literature, ESs are considered as a special class of Decision
Support Systems (DSSs), usually called intelligent DSSs [Marakas, 2003]. There is a
large number of definitions of what a DSS is. Here we follow French et al. [2009] saying
that a “DSS is a computer-based system that supports the decision making process,
helping DMs to understand the problem before them and to form and explore the impli-
cations of their judgements, and hence to make a decision upon understanding”. Both
DSSs and ESs can provide great benefits to DMs since these combine the knowledge of
several experts into a reusable tool that quickly processes information and makes infer-
ences. For the purpose of this thesis we use the two terms interchangeably, but we note
that the term ES is more common within the statistical community, whilst DSS appears
more frequently in the information systems’ literature.

Although DSSs have now been developed and used in practice in a variety of domains,
we argue in this thesis that DMs can only be properly supported in complex current
situations by an Integrating Decision Support System (IDSS) [Leonelli and Smith,
2015, Smith et al., 2015], which networks together different DSSs into a unique coherent
supporting tool. Here, briefly, we notice that this is true mainly for two reasons. First,
current applications, as for example nuclear emergency management, require knowledge
on a variety of domains, which can be difficult to synthesise into a unique system. Second,
the network structure connecting different DSSs provides the basis for both distributed
computations and reasoning, increasing the comprehensibility of the analyses performed
and the speed of computations, so that the IDSS can be used in real-time.

In order to support more strongly our statements, and therefore highlight both the
relevance and the contributions of this thesis, we need to provide a short history of the
development of ESs within the statistical literature. In Section 1.1 we describe early
ESs in use in the last century. We take a little digression in Section 1.2 to illustrate the
use of ESs for nuclear emergency management, summarising the discussion in Leonelli
and Smith [2013a]. In Section 1.3 we describe modern statistical DSSs and discuss
how these address the needs of current applications. Section 1.4 highlights the need
for and the main features of IDSSs by noticing the flaws of current DSSs in properly
supporting the decision making process in complex domains. We then conclude the
chapter by specifying the contributions and the structure of the thesis in Sections 1.5
and 1.6 respectively.
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1.1 Early Probabilistic Expert Systems

At their inception, ESs were only able to model deterministic domains. Their knowledge
base - comprising facts about the world and an inference engine - consisted of a set of
deterministic rules and, for this reason, such deterministic systems are often referred to
as rule-based ESs. Castillo [1997], whilst including an overview of rule-based systems
and their domains of application, recognised that the deterministic assumption is too
restrictive in most, if not all, of the cases. As the complexity of the problems addressed
by ESs increased, a slow recognition of the need for introducing measures of uncertainty
began to be appreciated. Uncertainty, as firmly stated by French [1995], is part of any
decision analysis, arising, among the others, from physical randomness, imprecision of
meaning and various estimates, and therefore needs to be properly addressed.

However at first, probabilistic reasoning was not considered as a viable option for un-
certainty modelling in ESs for a variety of reason: probability theory was thought as
epistemologically inadequate in this context, it required the specification of an infeasible
number of probabilities and there was no technology to feasibly perform the appropriate
computations. For these and other reasons, different approaches to the representation
of uncertainty were followed, as for example non-monotonic and fuzzy logic, certainty
factors and Dempster-Shafer belief functions [see e.g. Buchanan and Shortliffe, 1984,
Gabbay, 1985, Klir and Yuan, 1995, Shafer, 1976]. However, around the 1980s, solu-
tions to the three main criticism of the use of probability in ESs began to appear, which
allowed for a wider applicability of probabilistic ESs.

At that time the frequentist interpretation of probability was the most widespread within
the statistical community. This school of thought defines probability as the long-run
frequency of occurrence in repeated events: probability is an intrinsic property of the
system being observed. Clearly, this definition of probability does not easily fit the
process of supporting DMs, since decision situations are unique and human interventions
change the observed system. The subjective Bayesian definition of probability, which
was starting to be appreciated, defines it as the degree of belief about the state of the
world under consideration by the observer. This naturally provides an interpretation of
probability that can be used for uncertainty modelling in ESs. This is because within
the Bayesian framework probability is not any more an intrinsic property of the system,
but belongs to the DM and represents her own beliefs about it.

It was also recognised that graphical representations of the relationships between random
variables could be underpinned by conditional independences [Dawid, 1979], enabling
large dimensional joint probabilities to be written as products of local distributions
of smaller dimension, thus requiring less probability specifications. Formal statistical
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graphical models then began to be defined, as for example Markov Networks (MNs) and
Bayesian Networks (BNs) [see e.g. Lauritzen, 1996, Pearl, 1988, and Sections 2.3.2.2 and
2.3.2.4], which, exploiting conditional independences, represent the qualitative structure
of a multivariate random vector through a graph. Techniques exploiting the graph
structure, as for instance triangulation [see e.g. Spiegelhalter et al., 1993] and Bayesian
stochastic numerical approximations [see e.g. Gilks et al., 1996], enabled probability
calculations over the graph to be quickly and feasibly computed by ESs.

Statistical graphical models have now been applied by both statisticians and scientists
in a vast variety of domains and their methodology, although still refined, is well es-
tablished [Aguilera et al., 2011, Jordan, 2004, Korb and Nicholson, 2003, Oliver and
Smith, 1990, Smith, 2010, Uusitalo, 2007]. However, as the nuclear emergency man-
agement example in the following section highlights, many areas of science still have to
recognise the importance and the need for a complete uncertainty handling. The goal
of deducing objective scientific conclusions, which does not allow for uncertainty claims,
still permeates scientific reasoning [see for example the recent discussion in Rougier and
Crucifix, 2014, concerning the continuous development of higher-resolution simulators
for predicting climate change]. Symbolically, in Carter and French [2006] uncertainty is
said to be discomforting to the parties involved in decision making, whilst in Ahlbrecht
et al. [1997] uncertainty is even referred to as disconcerting for DMs. Carter and French
[2006] further highlights the far too limited perspective on uncertainty in the ESs de-
veloped. In Chapter 4 we show how current DSSs can lead DMs to irrational behaviour
due to the lack of complete probability propagations.

1.2 An Overview of Nuclear Emergency Management

In 1986 an explosion at one of the reactors of the Chernobyl nuclear power plant re-
leased a radioactive plume into the environment contaminating large areas of the former
Soviet Union. To protect people and food stocks, measures were taken by the govern-
ments of the affected countries. Different and often conflicting responses were further
taken by many European countries after the accident, confusing the public opinion and
leading to an ineffective implementation of countermeasures [Papamichail and French,
2013, Walle and Turoff, 2008]. It was therefore recognised the need of a comprehensive
response to nuclear emergencies within the European community. The way to achieve
such coherent response was identified to be the development of a common comprehen-
sive DSS for off-site emergency management. Several institutes in Europe then started
the development of the Real-time On-line DecisiOn Support system (RODOS) for nu-
clear emergencies, which would provide consistent predictions unperturbed by national
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boundaries [Ehrhardt et al., 1993]. We note here that other DSSs were built by differ-
ent initiatives during the following years, notably ARGOS [Hoe and Müller, 2003] and
MOIRA [Monte et al., 2009]. Here we focus our attention on the RODOS system only,
which embodies in its architecture the typical features of a nuclear emergency.

Alongside the development of RODOS, in the early 1990s the International Chernobyl
Project aimed at exploring the factors that drove decision making on protective measures
after the Chernobyl accident. Since many different parties and institutions were involved
in the decision making process at the time, the study was organised in five decision
conferences (see Chapter 2.6.1) (one for each of the affected countries - Belarus, Russia
and Ukraine - and two at all-Union level) where simple MultiCriteria Decision Analysis
(MCDA) models were used to explore the preferences and the beliefs of the different
parties. The analyses performed during these meetings clearly showed that not only
radiation related health effects and use of resources were relevant factors, as usually
conceived by standard cost-benefit analyses for radiation protection decisions, but also
the effects on the health of stress and the political acceptability of the countermeasures
taken. Note that MCDA methods are based on subjective judgements of the DMs and
for this reason had not been used beforehand in emergency management [Papamichail
and French, 2013], confirming the discomfort of scientists with non-objective analyses
mentioned above. The successful recognition by the International Chernobyl Project of
additional factors that drove decision making further highlights the necessity of using
subjective techniques in decision making.

Therefore, it was decided that MCDA methods had to be included in any operational
DSS for nuclear emergency recover as RODOS. Such a DSS would then combine scientific
knowledge about the likelihood of different events with the value judgements about these
to rank different agreed available policies and both facilitate the exploration and create
a deeper understanding of the problem at hand. The conceptual architecture of the DSS
RODOS itself mirrors the above description [Caminada et al., 2000], since the system is
composed by the following three subsystems:

• the Analysing SubsYstem (ASY) processes incoming data and forecasts the loca-
tion and the amount of contamination through time;

• the Countermeasure SubsYstem (CSY) suggests countermeasures, verifies their
feasibility and computes their benefit according to several criteria;

• the Evaluating SubsYstem (ESY) ranks policies according to their potential overall
benefits and provides explanations for the reasons of such a ranking.
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ASY
‘Analysing
subsystem’

CSY
‘Countermeasure

subsystem’

ESY
‘Evaluation
subsystem’

Display of contamination data.
Analysis and forecast of the

development of the contamination
based on data and
models’ outputs

Simulation of the effects of
the available countermeasures,

judgement of their attainability and
evaluation of the consequences

of each countermeasure.
Evaluation and rating of

the possible countermeasures by
considering their positive and
negative sides, together with
explanations of the ratings.

Emergency Actions:
Evacuation;
Sheltering;

Protective measures;

Long term measures:
Resettlement;
Purification;

Agricultural measures;

Figure 1.1: Conceptual structure of RODOS from Leonelli and Smith [2013a] and after
Raskob et al. [2009]. The left column lists the subsystems, the central one describes the
functionalities of each of these and the right one summarizes potential countermeasure

both in the short and in the long term.

Figure 1.1 summarises how the three subsystems are operationally linked in RODOS.
As shown on the left of the diagram, the output of the ASY, consisting of both the
likelihood of various events and the forecasts of contamination, are used as input for the
CSY. Given these forecasts, the CSY simulates the effects of the available decisions. The
results of these simulations are then used by the ESY subsystem to produce a rating
of each available countermeasure. We now look into more details into each of these
subsystems.

MCDA techniques were included into both the CSY and the ESY components to evaluate
and rank potential countermeasures. It is important to note here the relevance of the
explanation module within the ESY (as expressed in the bottom-central box of Figure
1.1). Empirical research has shown that DMs do not accept the suggestions of a system
which does not provide a rationale for the outputs it produces, even if the system
delivers accurate results [Papamichail and French, 2013]. Furthermore, as extensively
discussed in French et al. [2009], the ultimate objective of any decision analysis is not
in simply choosing a decision which is considered to be optimal according to certain
criteria, but more importantly in developing a deeper understanding of the values and
the uncertainties of the problem studied. These insights may then lead to an evolution
of the DMs’ judgements and possibly to a revision of the whole model. This process is
often called requisite modelling [Phillips, 1984]. This idea was effectively included in the
initial aims of both the development of RODOS and the International Chernobyl Project.
Therefore RODOS includes a variety of features to justify its outputs, as for example
a natural language report generator to explain the ranking of the policies [Papamichail
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and French, 2003], sensitivity analysis graphs and their interpretations [Papamichail and
French, 2005].

The ASY subsystem is made of many different modules (or component DSSs), each
providing estimates and forecasts for a different aspect of the emergency as stated in the
top central box of Figure 1.1. For instance, one of these modules concerns the workings
of the source term estimating the likelihood of a release of contamination from the
plant. Another one includes atmospheric diffusion models describing the spread of the
contamination. Additional modules model the effect of this spread might have because of
the exposure of humans, animals and plants. Although the ASY modules are capable of
working independently, in a comprehensive emergency management these are networked
together in the sense that the outputs of some modules are used as inputs for others.
Another important element to highlight from the above description is that the domains
the ASY modules aim at describing are particularly heterogeneous and therefore require
knowledge about a variety of different disciplines. In Figure 1.2, from Leonelli and Smith
[2013a], a plausible network of modules for use of a nuclear DSS is presented. Each vertex
of the network corresponds to a module and two modules are connected by an arc if the
outputs of the parent node are used as inputs for the child node (see Appendix B for an
introduction to graph theory). The modules corresponding to the vertices of the network
in Figure 1.2 cover the main aspects of a nuclear emergency, as for example the overall
workings of a nuclear power plant (Power plant and source term nodes), the spread of
contamination (Air and Water dispersal and contamination) and the consequences the
accident (Human health, Costs and Political effects). The nodes are grouped in such a
way that vertices with the same color represent modules concerning the same domain
of expertise. Specifically, the grey vertices are concerned with engineering issues; the
green ones with the environment; the blue ones with biological consequences; the brown,
red and yellow ones with the political, medical and economical outcomes, respectively.
Furthermore, the edge set of the network in Figure 1.2 describes plausible input/output
relationships between the modules. So, for instance, the Deposition module uses as input
only the outputs of the Water and Air dispersal modules, whilst Human absorption
depends on Water dispersal, Animal absorption and Deposition since these are the main
factors through which human can get in touch with the contamination.

Each of the modules of the ASY comprises a set of methodologies, either deterministic
or stochastic, to perform the task they were designed for. As an example, Turner
[1994] lists dozens of different atmospheric dispersion models that have been applied
to different domains and systems. From the very early stages of the development of
RODOS it was recognised [after considerable debate, as noted in Smith et al., 1997]
that stochastic, and more specifically, Bayesian inferential methodologies should be used
in such a nuclear DSS to assimilate, combine and represent uncertainties. Smith et al.
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Power
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Figure 1.2: Plausible network for the modules of a nuclear decision support system.

[1997] and our discussion in Section 1.1 extensively argued why it is reasonable to use this
representation of uncertainty. Therefore, different Bayesian models have been developed
for the different modules, as for example a BN for the workings of the source term
[Caminada et al., 2000], a dynamic random forest for the atmospheric dispersion [Smith
et al., 1997] and a dynamic spatial model for the deposition module [De and Faria, 2011].

It is also important to note here that in theory it could be possible for the ASY to
consist of a single big module which models the whole domain of nuclear emergency
management. However, the provision of the system to be used across all the European
countries required the software to support the integration of external programs developed
by national research institutes of the many involved countries. Therefore, the ASY had to
be structured in this modular form, as a network of sub-models concerning the different
elements of the emergency.

The description of the RODOS system for nuclear emergency management has high-
lighted the complexity of the domains that current DSSs aim at describing. The main
points to inherit from this section are the following:

• inference and forecasting need to be distributed among the different modules within
the DSS;

• the judgements and beliefs of different individual with different expertise need to
be included in the inferential process;

• computations need to be fast to allow for real-time decision making in case of an
emergency;

• MCDA techniques need to be included to reveal the true values of the DMs.

It is important to underline the scientific relevance of a project like the development
of RODOS. Fortunately, although the consequences of a nuclear accident are and are
perceived as severe and far-reaching, the probability of occurrence of these is extremely
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low and RODOS is likely not to be used for actual emergency management [Geldermann
et al., 2009].1 At the same time, this implies that data and knowledge about this type of
emergencies is scarce. The process of the construction of RODOS has actually deepened
the understanding of both the values of potential DMs and the possible evolutions of the
emergency. As noted in Papamichail and French [2013], nuclear emergency management
has been at the forefront of both stakeholder engagement and the use of decision confer-
encing, demonstrating the benefits of these techniques. Nowadays RODOS is not only
used as an incommensurable educational tool for training personnel through exercises
of scenario analysis, but also to highlight the areas in which current emergency manage-
ment plans may not be adequate. Gering et al. [2013] reported a study where RODOS
was used to simulate emergencies with features similar to the recent outworkings of the
Fukushima nuclear plant and showed that current methodologies have several major
problems.

1.3 Current Probabilistic Expert Systems

The complexity of the models that are currently built to tackle real applications, as
the nuclear one, is increasing radically. The decomposition into local distributions that
standard graphical models offer is not sufficient any more to both clearly depict the
situation under study and allow for fast computations. Within the statistical graphical
community, this was first recognised in Mahoney and Laskey [1996] for modelling mil-
itary problems. The authors highlighted the need of an additional intermediate level
of decomposition which breaks down the problem into a set of coupled components,
both semantically and formally separable. Semantic separability implies that the com-
ponent is meaningful to the user of the model, whilst formal separability means that
the different components can be re-aggregated into a consistent probability model. This
intermediate decomposition exactly corresponds to the division of the ASY component
into networked modules within the RODOS system as in Figure 1.2 and is indeed called
in Mahoney and Laskey [1996] modularisation.

Mahoney and Laskey [1996] referred to two attempts in the literature to create this
intermediate level of modelling, namely similarity networks [Heckerman, 1990] and multi-
sectioned BNs [Xiang, 2002, Xiang et al., 2011]. However, since both these attempts
do not allow for enough modelling flexibility, they pointed towards the use of object
oriented techniques in probabilistic modelling, similar to the ones used in programming
languages. The authors noticed, as further stressed in Johnson et al. [2012], that the

1Walle and Turoff [2008] noted that such a system could be actually used for different types of nuclear
threats, as for example dirty bombs, although this type of aid is not publicly stated in the mission of
RODOS.
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object oriented paradigm provides features to simplify the modelling task in complex
situations. Specifically:

• abstraction/encapsulation: this means that some information is hidden to the
user and its access is allowed only via a predefined interface. Modifications within
these interfaces do not affect other parts of the system;

• modularisation/reuse: the system is composed of a set of loosely connected
units, which, if the interfaces are held fixed, can be changed without having to
rebuild the whole model.

These features are embedded in the IDSS methodology we introduce in this thesis and,
by recalling the description of the nuclear DSS RODOS, are required if we are to develop
support systems to be used in practice.

The object oriented route for probabilistic graphical models then started with the devel-
opment of Object Oriented Bayesian Networks (OOBNs) [Koller and Pfeffer, 1997] and,
concerning the modelling of complex situations, then continued in two main streams of
research. The first one aimed at integrating first-order logic with Bayesian probability
theory and culminated with the definition of multi-entity BNs [Laskey, 2008, Laskey and
da Costa, 2009]. These can be represented as a collection MFrags [Laskey and Mahoney,
1997], which can be thought of as OOBNs with root nodes having known values. The
other strand of research discusses the use of OOBNs as an integrating tool and intro-
duced the concept of integrating BNs [Johnson and Mengersen, 2012]. An integrating
BN can be thought of as a large OOBN where different probabilities are elicited by
different groups of experts. These are a special case of IDSSs, but still represent an
important step forward to the representation and elicitation of complex probabilistic
models. These have been successfully applied to a variety of domains [Johnson et al.,
2013, 2014, Mortera et al., 2013].

A completely different route from the object oriented paradigm in ESs has been proposed
in Goldstein and O’Hagan [1996], which suggested the use of Bayes linear methodologies
not requiring the specification of a full prior distribution [see e.g. Goldstein and Wooff,
2007]. This approach simplifies both the computation and the elicitation burden, but
does not provide in itself a viable alternative for the modelling of complex situations as
the nuclear emergency management case described above.

Although all the above models can be used to support management decisions as noted in
Johnson et al. [2014], these do not include any formal representation of both the avail-
able decision space and the preferences of the DM, as required in the nuclear emergency
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management example. Influence Diagrams (IDs) are a class of graphical models repre-
senting random variables, utilities and decisions [see e.g. Bielza et al., 2011, Howard and
Matheson, 2005a, Jensen and Nielsen, 2013, and Section 2.5.1]. Of critical important
is to note that the literature about IDs does not provide many insights on the use of
these models for the representation and modelling of complex situations. The main focus
of ID’s research has been on the improvement of the speed computations, either exact
or approximated. Thus, although IDs include both decision and utilities, these do not
possess the expressive power of, for example, integrating BNs for the representation of
current applied problems.

Before concluding this section, we note that the description of the nuclear emergency
management domain highlighted the geographic nature of many problems that DMs
have to deal with in practice. On one hand, this simply means that the dimensionality
of the overall problem grows since each variable of the large system might be recorded
and observed at different locations in space. On the other, it also raises issues specific
of geographic modelling and concerning the use of geographic information systems in
probabilistic models [Stassopoulou et al., 1998]. Although we do not deal specifically
with these issues, we recognise their importance in many applications and we note that
there are now methods customised for the integration of geographic information systems
with graphical models [Johnson et al., 2012, Laskey et al., 2010]. However, in Section
4.4 we present two examples of how a geographic component can be included into an
IDSS in the simplest possible case.

1.4 Decision Support Systems for the XXI Century

Although the technology reviewed in the previous section represents a big step forward
in the modelling of complex issues, we note here that these methodologies still do not
address many of the features of classes of problems as the nuclear emergency management
of Section 1.2.

First, because of the underlying OOBN assumption, most of the methods above assume
that each submodel is a graphical one. This is a restrictive assumption and, as we
saw, many statistical models, not necessarily graphical, have been already developed for
some of the ASY components of RODOS. Furthermore some of the modules in use often
are not probabilistic: this is the case for example of big simulators that model climate
change. The technology of emulators [Kennedy and O’Hagan, 2001, O’Hagan, 2006, and
Section 2.3.5] can then be used to introduce a probabilistic distribution over the outputs
of such simulators.



Chapter 1. Introduction 12

Second, RODOS implemented MCDA techniques to perform a formal decision analysis.
Many current statistical ESs do not allow for such outputs and in general provide only
probabilistic beliefs on a set of goal variables. Therefore, there is a need for new methods
to be implemented in DSSs that have the power of performing MCDAs. In RODOS this
was based on value functions. We argue here though that for current DSSs this is not
sufficient and that multiattribute utility theory, enabling a full uncertainty handling,
needs to be used as a representation of the DMs’ preferences.

Third, in such domains decision making is not usually the responsibility of a single
individual but rather of groups. Decision centres will have the accountability and the
responsibility of choosing a course of action and their judgements will be supported by
best experts’ knowledge. Therefore, DSSs need to provide both a theoretical framework
allowing for such a collaborative purpose and the technology to support prescriptive
team decision making.

Lastly, in order for this to be feasible in practice, both probabilistic inferences and
preferential modelling need to be distributed, as in the ASY, ESY, CSY structure of a
system like RODOS. Therefore, the distributed nature of, for example, an integrating
BN needs to embellished with a formal preferential analysis, which entertains the same
distributed nature, both formally and semantically.

It is therefore fundamental to develop a framework with the above features in order
to properly support DMs in real current applications. As remarked by Mahoney and
Laskey [1996], the distributed nature of such a methodology is vital, since the following
benefits would follow:

• computational tractability;

• comprehensibility;

• feasibility of testing.

Computational tractability derives from the local computation structure associated to
distributed systems [widely studied in machine learning, see e.g. Peteiro-Barral and
Guijarro-Berdiñas, 2013, Rodŕıguez et al., 2011]. Distributed systems are more com-
prehensible since the overall outputs can be traced back to each subsytem’s outputs,
providing much clearer justifications of the delivered estimates. Finally, feasibility of
testing follows since each subsystem can be more straightforwardly tested and poten-
tially upgraded than the whole system at once. In the following we highlight how the
IDSS methodology we introduce here entertains such features.
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As with the motivations that lead to the inception of graphical modelling techniques, we
can notice that distributivity in complex systems aims at breaking down a huge problem
into ones of smaller dimension. In Spiegelhalter et al. [1993] such a modelling approach
was referred to as divide-and-conquer. The methodology of IDSSs uses the same idea to
simplify decision analyses in highly multivariate and heterogeneous problems. We note
here that such an approach is commonly used in a variety of domains and subjects, as
for example in composite likelihood methods [Varin et al., 2011], Markov chain Monte
Carlo schemes [Lindsten et al., 2014] and parallel computing [Chandy et al., 1998].

1.5 Contributions of the Thesis

In this thesis we develop a methodology that addresses the gaps of current ESs we listed
in Section 1.4 to model complex domains. We call our methodology an IDSS, which
embeds a formal distributed Bayesian decision analysis combining the beliefs of different
of groups of experts. Throughout the thesis we specify the conditions enabling such an
integration in a variety of frameworks and discuss the advantages of this methodology.
We then provide a toolkit of methods for inference and decision making in an IDSS by,
for instance, developing propagation algorithms and symbolic methodologies.

From a more specific/domain-based viewpoint, the results in this thesis extend current
methods on a variety of aspects:

• in Chapter 3 we extend standard independence notions over the parameter vectors
of a variety of graphical models [see e.g. Dawid and Lauritzen, 1993, Freeman and
Smith, 2011, Spiegelhalter and Lauritzen, 1990] enabling distributed multi-expert
inferences in IDSSs;

• there are now several rules to combine expert judgement in the literature [see
e.g. French, 2011]. Our work extends such rules for complex multivariate domains
where the overall probability distribution can be described by means of a graphical
model (see e.g. Propositions 3.6.5 and 3.6.14);

• a new concept of statistical causality tailored to the needs of an IDSS is defined in
Section 3.5. We are able to show that the standard definition of causality of Pearl
[2000] represents a special case of our definition;

• we introduce a new class of utility factorisations in Section 4.1.1.3 customised to
the needs of an IDSS, allowing for a distributed computation of Bayesian expected
utilities in the multi-expert domains we address;
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• we introduce in Section 4.3 new utility-based propagation algorithms for the dis-
tributed computation of expected utility scores in IDSSs. Some of the current
evaluation algorithms of decisional structures can be seen as special cases of the
ones we define here;

• we deduce new recursions for the computations of moments of functions over the
vertices of an agreed graphical model, generalising the ones of Cowell et al. [1999]
and Nilsson [2001];

• by studying decision making in an IDSS from an algebraic perspective, we identify
minimal sets of independence statements assuring the system provides rational
decision support. This recognition leads us to define in Section 5.3 new types of
independence tailored to the needs of an IDSS;

• we develop in Section 5.6 new symbolic approaches to decision making in different
frameworks, which extends current symbolic methods for probabilistic reasoning
in graphical models [see e.g. Castillo et al., 1997b, Darwiche, 2003].

More detailed explanations of how our results generalise current methodologies can be
found in the following chapters.

In this thesis we almost exclusively focus on the technical conditions that guarantee
the existence of an IDSS. In order to concisely illustrate this methodology, our examples
necessarily need to be small-dimensional. However, as we discuss more extensively in the
following chapters, our methods would scale up to larger real-world examples because
of the distributed nature of IDSSs.

The material of this thesis has appeared/will appear in seven papers I have co-authored
with my supervisor Jim Smith and other collaborators. Additional details about these
papers can be found in the Declaration on page v.

1.6 Structure of the Thesis

Having extensively discussed the need for an IDSS and reviewed other statistical ap-
proaches to model complex domains in this first chapter, in Chapter 2 we survey clas-
sical Bayesian decision analysis methods. We then discuss standard Bayesian reasoning
and the Subjective Expected Utility (SEU) methodology for decision making. We in-
troduce a variety of probabilistic, utility and decision models. We further survey issues
associated to group decision making and the use of expert judgement.
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In Chapter 3 we introduce IDSSs and a set of axioms that can guarantee their existence.
We then discuss what makes a ‘good’ IDSS and generic conditions that can ensure a good
IDSS both a priori and after the introduction of both observational and experimental
data. We then show that many of the statistical models introduced in Chapter 2 can be
used as an underlying probabilistic framework for an IDSS and discuss the conditions
that these need to entertain.

We then consider in Chapter 4 a large class of IDSSs based on flexible probability and
utility models. For this class we develop distributed utility-based propagation algorithms
that allow for the exact computation of expected utility scores from the outputs of the
individual modules of the IDSS. We then exemplify the methodology at the end of the
chapter in a variety of domains.

The expressions used by the IDSS to rank the available policies are often polynomial
functions of the outputs of the component DSSs. This recognition lead us to analyse
IDSSs in Chapter 5 from an algebraic viewpoint and to define independence concepts
following from the polynomial relationships existing between these outputs. We then
introduce symbolic techniques for particular statistical models in IDSSs, which are inti-
mately linked with algebraic analyses.

We conclude the thesis in Chapter 6, where we summarise the main results of the thesis
and discuss possible extensions of the methods developed in the thesis.

The thesis also include 5 appendices. In Appendix A we collect longer proofs. Appendix
B introduces the required terminology of graph theory. Appendix C reviews basic statis-
tical distributional theory and standard Bayesian models. Appendix D consists of basic
definitions of polynomial algebra. In Appendix E we report our computer algebra code
to implement the methods we introduce in Section 5.6.1.



Chapter 2

Classical Bayesian Decision
Analysis

In the introduction we discussed the use of Bayesian reasoning and modelling techniques
at the inception of probabilistic ESs. Although we noted the inappropriateness of stan-
dard methodologies for the needs of current applications, several systems are still based
on these traditional models. The theory we develop in the following chapters is a gen-
eralisation of Bayesian methodologies and models to formally accommodate the beliefs
of different group of experts. We need therefore first to provide a broad overview of the
currently available Bayesian modelling tools for DMs.

The chapter is structured as follows. In Section 2.1 we outline the Bayesian formalism
of inference. Section 2.2 introduces the Subjective Expected Utility (SEU) methodology
which embeds canons of rational decision making and defines rules to make decisions
that are optimal according to these canons. The SEU model basically consists of two
main ingredients: a probability function, representing the beliefs of a DM, and a utility
function, representing her values. Sections 2.3 and 2.4 introduce methodologies to rep-
resent respectively probability and utility functions in a multivariate setting. In such a
case the definition and elicitation of these functions is often prohibitive. Independence
concepts have been introduced to factorise these into subfunctions with a smaller number
of arguments. Such factorisations can often be depicted by a graph providing a powerful
and intuitive representation of the relationships between the elements of the problem.
Therefore our discussion is mainly based on graphical models, for both probabilities and
utilities. We introduce here a new subclass of certain utility graphical models defined in
Abbas [2010] that have interesting properties in the domains we address in this thesis
[see also Leonelli and Smith, 2015].

16
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In Section 2.5 we introduce classes of models that explicitly represent both probabilities
and utilities, and the decisions available to a single DM. Again our discussion focuses on
graphical models and in particular on the Influence Diagram (ID) model. We consider
in this thesis the models class of multiplicative IDs defined in Leonelli et al. [2015a] and
introduce a new fast evaluation algorithm for these models.

The SEU model is only capable of representing how a single DM should rationally commit
to decisions. However, as we have seen in Chapter 1, policy choices are seldom made by
just one person. There might be several DMs sharing the authority and responsibility of
choosing a certain policy, many stakeholders who are affected by the DM’s decision, and
experts that are consulted by the DMs. In Section 2.6 we briefly review the literature
on both group decision making and the use of expert judgement to support decision
making. We then conclude with a more detailed explanation of the contributions of this
thesis and a discussion.

2.1 Bayesian Reasoning

2.1.1 The Full Probabilistic Case

A problem domain is denoted by an often large dimensional random vector Y with
sample space Y . We denote by y a generic instantiation of Y and we let θ ∈ Θ

parametrise the density function f of Y . In a Bayesian framework the parameter θ is
itself a random variable. We let π denote its density function. For the purpose of this
section, the vectors are assumed to be continuous.1 Let X be a random vector sampled
from the same population as Y providing some data points x. Within this framework,
Bayes theorem can be simply employed to update the beliefs about θ after evidence
x has been observed as

π(θ | x) = f(x | θ)π(θ)
f(x) = f(x | θ)π(θ)∫

Θ f(x | θ)π(θ)dθ . (2.1.1)

The terms of equation (2.1.1) have all a meaning. The so called prior distribution, π(θ),
represents the beliefs of the DM about the parameter θ before evidence x is introduced
into the system. If for example Y were a univariate binary random variable, then π(θ)
would simply be a probability distribution over [0, 1] representing the beliefs of the
DM about the probability of a success (for simplicity here we have chosen a discrete
example). Although we do not further discuss these issues, we note that there is now
an extensive literature and several software that allow for a faithful elicitation of such

1In discrete domains integrals are simply substituted by summations. We denote probability mass
functions by p.
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prior beliefs [see e.g. O’Hagan et al., 2006]. The other term at the numerator, f(x | θ),
is usually called a likelihood function. In a Bayesian setting this measures the DM’s
degree of belief in the data taking certain values given that the parameter is fixed to a
certain hypothetical value. Continuing the example above, the likelihood would be in
this situation the density of a Bernoulli random variable with a hypothetical unknown
probability of success. The denominator of equation (2.1.1), f(x), simply corresponds
to a normalising constant, since for a Bayesian all the relevant information is related to
θ. Therefore, equation (2.1.1) is often presented in the following form,

π(θ | x) ∝ f(x | θ)π(θ), (2.1.2)

where ∝ corresponds to proportionality. The corresponding normalising constant is of-
ten difficult to compute, since it requires an integration over an arbitrarily large space.
Thus, equation (2.1.2) often represents a computationally less intensive version of equa-
tion (2.1.1). Finally, the posterior distribution, π(θ | x), is simply the revised density
function of θ after evidence x has been observed. Suppose, for instance, that x in the
running example is the result of ten coin tosses showing all head (or 1) and assume that
the prior distribution was symmetric around 1/2. The posterior distribution would then
be left-skewed and values in the interval (1/2, 1] would have in general higher proba-
bility than the ones in [0, 1/2]. Henceforth, we assume all these densities to represent
the subjective Bayesian beliefs of a DM [for more details on the various interpretation
of probabilities and the adequateness of the Bayesian interpretation in decision making,
see e.g. French and Rios Insua, 2000, O’Hagan and Forster, 2004].

Depending on whether the variables are continuous or discrete, on their support and
on the domain under study, there exist many different possible choices for both the
likelihood function and the prior density. We review a variety of standard models in
Appendix C, as for example the Bayesian Normal linear model, which assumes a Normal
distribution for both the likelihood and the prior density of the mean when the variance
is assumed to be known. We note here that a computationally efficient choice of prior
and likelihood are of two that are conjugate [Bernardo and Smith, 2009, O’Hagan and
Forster, 2004]. This is the case whenever the posterior, computed via Bayes theorem,
lies in the same family of distributions as the prior. In the example above, if π(θ) were
chosen to follow a Beta distribution with parameters (a, b) ∈ R2

>0, then the posterior
would also be a Beta with some new parameters (a′, b′) ∈ R2

>0 (see Appendix C.1.1).

Implicitly in equation (2.1.1) we assumed that the parameters of the distribution of θ
were known. Within the Bayesian approach this does not necessarily have to be the case
and several different levels or layers of uncertainty can be introduced. This modelling
strategy is usually referred to as multilevel or hierarchical modelling [Gelman and Hill,
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2006]. For example, the parameters of the Beta distribution above, a and b, could have
been assumed to be random and depending on some other parameters, which could have
further been random variables, and so forth. For the purpose of this thesis, we only
consider hierarchies consisting of one layer so that the parameters of π(θ) are known.
These are usually referred to as hyperparameters.

2.1.2 Moments

Density functions can be easily summarised using the notion of moments, which can
describe some of their features. Moments are expected values of power functions of
random variables. To introduce these, we first define the concept of expected values.
Let g : Y → Y ′, i.e. g is a function mapping elements of Y into Y ′.

Definition 2.1.1. The expected value of g(Y ) is defined as2

E(g(Y )) =
∫

Y ′
g(y)f(y)dy =

∫
Θ
E(g(Y ) | θ)π(θ)dθ, (2.1.3)

where the expected value E(g(Y ) | θ) conditional on θ is defined as

E(g(Y ) | θ) =
∫

Y ′
g(y)f(y | θ)dy. (2.1.4)

For continuity with the previous section, we considered in Definition 2.1.1 quantities
conditional on the parameter vector θ. However, in general, the conditioning might
operate over any random vector of interest.

We can now define the notion of moment. Let, for n ∈ Z≥1, [n] = {1, . . . , n}, sT =
(s1, . . . , sn) = (si)i∈[n] ∈ Zn≥0 and Y s = Y s1

1 · · ·Y sn
n .

Definition 2.1.2. We say that the moment of order s of Y is E (Y s). The moment of
order s of Y conditional on θ is E (Y s | θ).

We now define some specific moments.

Definition 2.1.3. Let Y , Yi and Yj be random vectors of dimension n. The expectation
of Y is E(Y ) = E(Y 1), where 1 is a vector of dimension n with 1 in each entry, whilst
the variance of Y , V(Y ), is E((Y − E(Y ))(Y − E(Y ))T). The covariance between Yi
and Yj, C(Yi,Yj), is E((Yi − E(Yi))(Yj − E(Yj))T).

Definition 2.1.4. Let Y , Yi and Yj be random vectors of dimension n. The conditional
expectation of Y given θ is E(Y | θ) = E(Y 1 | θ), whilst the conditional variance of Y

2In the discrete case equations (2.1.3) and (2.1.4) have a slightly different form which is not relevant
for this thesis and can be found in Casella and Berger [2002].
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given θ, V (Y | θ), is E ((Y − E(Y | θ)) (Y − E(Y | θ))T | θ). The conditional covari-
ance between Yi and Yj given θ, C(Yi,Yj | θ), is E((Yi−E(Yi | θ))(Yj−E(Yj | θ))T | θ).

We now list some properties of these operators [see e.g. Casella and Berger, 2002].

Proposition 2.1.5. Let Yi and Yj be random vectors of dimension n. Further let Bi
and Bj be n×n matrices with real entries, whilst b ∈ Rn. The following identities hold.

E(BiYi ±BjYj ± b | θ) = BiE(Yi | θ)±BjE(Yj | θ)± b,

C(Yi,Yj | θ) = E
(
YiY

T
j | θ

)
− E(Yi | θ)E(Yj | θ)T,

V(BiYi ±BjYj ± b | θ) = BiV(Yi | θ)BT
i +BjV(Yj | θ)BT

j ± 2BiC(Yi,Yj | θ)Bj .

The following proposition then links conditional and unconditional moments of order
one and two.

Proposition 2.1.6. Let Yi and Yj be two random vectors. Then

E(Yi) = E(E(Yi | θ)), (2.1.5)

V(Yi) = E(V(Yi | θ)) + V(E(Yi | θ)). (2.1.6)

Equations (2.1.5) and (2.1.6) are usually called tower rules of moments. Specifically,
equation (2.1.5) is the tower rule of expectations, whilst equations (2.1.6) is referred to
as law of total variance. Brillinger [1969] generalised the identities (2.1.5)-(2.1.6) and
deduced a recursive formula to compute cumulants of any finite order. Cumulants can
be thought of as a function of the moments, and vice versa. Many properties of random
vectors can be more easily investigated using cumulants than moments [see e.g. Zwiernik
and Smith, 2012].

2.2 The Subjective Expected Utility Model

In the previous section we introduced the Bayesian framework for reasoning about and
modelling uncertainty. However, the Bayesian approach further provides an axiomatic
basis for decision making, which embodies canons of rationality, usually referred to as
the SEU model. Broadly speaking this consists of three main components:

• a decision space D which includes the decisions d ∈ D available to the DM;

• a probability density f over the unknown state y ∈ Y of a vector of relevant
random variables Y ;
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• a utility function u(d, r(y,d)) describing the DM’s preferences over some random
vector R, whose instantiation r = r(y,d) is a function of both d and y, and takes
values in R.

Having dealt with probability in Section 2.1, we now focus on utility functions.

Definition 2.2.1. A utility function with arguments d and r is a real-valued function
unique up to increasing affine transformations, u : D×R→ R, such that

∀ (di, ri), (dj , rj) ∈ D×R, u(di, ri) ≥ u(dj , rj)⇔ (di, ri) � (dj , rj),

where (di, ri) � (dj , rj) means that the DM finds that (di, ri) is at least as preferable as
(dj , rj). The× denotes the Cartesian product.

Note that in general utility functions only represent preference rankings and do not
include any representation of the strength of these preferences. Formally, utilities are
only unique up to increasing affine transformations. Therefore, utility functions are
usually normalised so that they take values between 0 and 1, i.e. u : D×R → [0, 1].
There have been some theoretical studies considering strength of preferences [see e.g.
Argyris et al., 2014], but these are not considered in this thesis.

The study of utility functions dates back to the work of Von Neumann and Morgenstern
[1947] which mostly concerned the theory of games. Throughout the following years,
several different authors derived different constructions of the SEU model based on
different, but related, sets of axioms [e.g. Anscombe and Aumann, 1963, de Groot, 1970,
Savage, 1972]. We assume throughout the thesis that a set of axioms underpinning
the SEU model holds and that the DM is able to elicit both a utility function and a
probability distribution respecting one of these.

Now that utility functions have been introduced, we can show how the SEU model
combines probabilities and utilities to guide decision making. Decisions are ranked
according to their associated expected utility.

Definition 2.2.2. Let D be a decision space, f a density function for a random vector
Y parametrised by θ and u a utility function with arguments d ∈ D and r = r(y,d).
The expected utility of a decision d, ū(d), is defined as

ū(d) =
∫

Θ
ū(d | θ)π(θ | d)dθ, (2.2.1)

where

ū(d | θ) =
∫

Y
u(r,d)f(y | θ,d)dy, (2.2.2)
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is the conditional expected utility.

Definition 2.2.3. We say that a decision d∗ ∈ D is optimal if d∗ maximises the
expected utility, i.e.

d∗ = arg max
d∈D

ū(d). (2.2.3)

A few important points need to be made here. First, we underline that the SEU describes
rational decision making of a single DM and there is no clear extension of this model
to groups of DMs (see Section 2.6). Second, the utility function, in contrast to value
functions considered for example within RODOS, are able by construction to model
attitudes towards risk [see e.g. Keeney and Raiffa, 1976]. Lastly, we remark that the
SEU model falls within the class of normative approaches to decision making. From a
set of axioms describing rationality, normative approaches are then able to produce a
ranking of the available actions. However, there is a huge body of empirical literature
which shows that people do not make decisions according to the SEU model [Tversky and
Kahneman, 1974]. This observation led on one hand to the development of extensions
of the model [e.g. prospect theory, Kahneman and Tversky, 1979], and on the other to
a different use of normative models to support DMs instead of automatically selecting
optimal decisions. For example, the SEU model can be implemented into a DSS simply
in order to allow the DM to explore the effects of her judgements on the ranking of the
actions available to her.

Although equations (2.2.1) and (2.2.2) easily describes how expected utility can be
computed, we note that in multivariate and dynamic settings the elicitation of both the
utility function and the density function is often hard. Therefore, several concepts of
independence and different modelling strategies have been discussed in the literature.
We first review the methods developed for the density f and after for the utility function
u. Another difficulty arises because of the maximisation in equation (2.2.3) when D is
high-dimensional. We show in Section 2.5 methods that decompose the maximisation
process to take place into smaller spaces and therefore be computationally simpler.

2.3 Probability Models

In this section we introduce a variety of models that decompose a probability density
f into smaller dimensional (conditional) densities. Our discussion focuses on graphical
models since these can more easily describe the qualitative features underlying a domain
of interest, a property that turns out to be fundamental for the developments of this
thesis. We first introduce in Section 2.3.1 the notion of conditional independence which
is at the basis of the decomposition generated by graphical models. We then review
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non-dynamic and dynamic models in Sections 2.3.2 and 2.3.3 respectively. In Section
2.3.4 we introduce the notion of statistical causality and explain its importance within
Bayesian reasoning. We conclude with a discussion in Section 2.3.5 of the use probabilis-
tic emulators. These describe through a probability density the outputs of a complex
deterministic function arising for example from complex computer codes.

For ease of notation we leave the dependence on the decision d implicit in this sec-
tion. However, although not explicitly labelled, the results below need to hold for every
possible decision in D.

2.3.1 Conditional Independence

As discussed in Chapter 1, graphical models can be underpinned by a conditional in-
dependence structure [Dawid, 1979] allowing for a formal modularisation of a model.
Although conditional independence can be generally thought of as a tertiary operator
- · ⊥⊥ · | · - exhibiting a set of properties [see e.g. Dawid and Lauritzen, 1993, Smith,
1989a], we formally define it for random variables and vectors only. It is important to
point out that recently Dawid and Constantinou [2014] generalised the notion of condi-
tional independence to include both non-stochastic and stochastic variables and called it
extended conditional independence, which entertains the same properties of of standard
conditional independence.

For the purpose of this section, let A, B C and D be disjoint subsets of [n], YA, YB, YC
and YD be random vectors, and g denote a generic function.

Definition 2.3.1. We say that YA is independent YB given YC , YA ⊥⊥ YB | YC , if
f(yA,yB,yC) = f(yA | yC)f(yB,yC).

The conditional independence statement YA ⊥⊥ YB | YC asserts that the only information
to infer YA from YB and YC is from YC . Dawid [1979] showed that the conditional
independence operator has the following properties.

Proposition 2.3.2. It holds that:

1. YA ⊥⊥ YB | YC ⇐⇒ YB ⊥⊥ YA | YC ;

2. YA ⊥⊥ YB | YC =⇒ g(YA) ⊥⊥ YB | YC ;

3. YA ⊥⊥ YB | YC =⇒ YA ⊥⊥ YB | YC , g(YA);

4. YA ⊥⊥ YB | YC and YA ⊥⊥ YD | YB,YC ⇐⇒ YA ⊥⊥ YD,YB | YC .
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We refer throughout the thesis to the condition in point 1 as the symmetry property,
whilst point 4 is usually referred to as strong decomposition. These properties of condi-
tional independence are usually called semi-graphoid axioms.

Note that, although conditional independence is deeply linked to particular factorisations
of densities, it is qualitative in nature and therefore easier to identify and justify.

2.3.1.1 Context Specific Independence. The notion of conditional independence
is only able to describe statements of the form YA ⊥⊥ YB | YC holding for every instan-
tiation yC ∈ YC , where YC is the sample space of YC . However, often this does not
have to be the case and a domain can exhibit some independences only for subspaces of
the sample space. Context specific independences are able to depict this more general
scenario [Boutilier et al., 1996].

Definition 2.3.3. Let Y ′D be a subspace of YD, the sample space of YD. We say that
YA and YB are contextually independent given YC and context yD ∈ Y ′D if

f(yA,yB,yC ,yD) = f(yA | yC ,yD)f(yB,yC ,yD), for yD ∈ Y ′D.

In Sections 2.3.2.6 and 2.3.2.7 we introduce two classes of models that can graphically
model this more general class of conditional independence statements.

2.3.2 Non Dynamic Models

The notions of conditional independence introduced in Section 2.3.1 is now exploited
to define various types of models in a non-dynamic framework, i.e. when there is no
recursive updating through time of the involved probabilities. Let Y = (Yi)T

i∈[n] be a
vector of random variables with sample space Y =×i∈[n] Yi, where Yi is the sample
space of Yi, y ∈ Y and yi ∈ Yi, i ∈ [n]. Let θA, taking values in ΘA, parametrise
the (conditional) density of YA having sample space YA =×i∈A Yi, A ⊆ [n]. Let
θ = (θT

i )T
i∈[n] be the parameter associated to the density of Y taking values in Θ.

2.3.2.1 Independence Models. The simplest non dynamic model is the so called
independence model.

Definition 2.3.4. An independence model for (Y ,θ) is such that ⊥⊥ i∈[n]Yi | θ.

The independence model class can be simply described by a graph with vertex set
{Yi : i ∈ [n]} and empty edge set.
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2.3.2.2 Bayesian Networks. BNs [Jensen and Nielsen, 2009, Korb and Nicholson,
2003, Lauritzen, 1996, Pearl, 1988, Smith, 2010] are the graphical model most widely
used in practice. There are now thousands of applications of these probabilistic tools in
a variety of domains [Aguilera et al., 2011, Cowell et al., 2011, Heckerman et al., 1995,
Niedermayer, 2008, Uusitalo, 2007]. These are especially attractive because the Directed
Acyclic Graph (DAG) associated to a BN embodies qualitative information in terms of
various conditional independences, and so often easier to elicit and explain then some of
its competitors. Explicitly, in a BN each random variable of the problem corresponds to
a vertex of the DAG and directed edges between vertices represent possible dependencies
between the variables.

Only density functions associated to certain sets of conditional independences can be
represented by a specific DAG model. The following definition introduces one such class
of conditional independence requirements. We let A′i ⊂ [n] be the index set of the non
descendants of Yi, whilst Πi ⊂ [n] is the index set of its parents, i ∈ [n].

Definition 2.3.5. A probability density f over Y | θ is said to obey the local directed
Markov property relative to a DAG G, if, for i ∈ [n], Yi ⊥⊥ YA′i | YΠi ,θ.

Therefore, a DAG is able to describe the conditional independences of a random vector
only if the associated density is local directed Markov. Cowell et al. [1999], among the
others, showed that there are other equivalent statements to the local directed Markov
property that can characterise probability densities respecting the topology of a DAG.
One such condition is the so called recursive factorisation property of the density func-
tion.

Lemma 2.3.6. If a density f over Y obeys the local directed Markov property relative
to G, then it respects the recursive factorisation formula, i.e.

f(y | θ) =
∏
i∈[n]

f(yi | yΠi ,θi)

The BN model can now be formally defined as follows.

Definition 2.3.7. A BN over Y consists of

• a DAG G with vertex set {Yi : i ∈ [n]} and an edge from Yi to Yj if and only if
(iff) i ∈ Πj;

• for i ∈ [n]1 = [n] \ {1}, conditional independence statements of the form Yi ⊥⊥
YA′i | YΠi ,θ;

• for i ∈ [n], conditional densities f(yi | yΠi ,θi).
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Figure 2.1: Example of a directed acyclic graph depicting the relationships between
four random variables.

As briefly pointed out previously, one of the main strengths of BN modelling lies in its
qualitative nature. Relationships between random variables are intuitively depicted by a
graph, which are therefore easy to justify and explain in natural language. Smith [2010]
described a protocol that can be followed to elicit the graph structure associated to a
BN, whilst O’Hagan [2006] discussed how the associated densities can be quantified.
Although in this thesis we always assume that the structure of the DAG of a BN is
elicited by either a DM or appropriate experts, we note here that several routines to
automatically learn the DAG’s topology from data are now in place under a variety of
conditions [see e.g. Cooper and Yoo, 1999, Neapolitan, 2004].

Example 2.3.8. Consider the DAG in Figure 2.1 with vertex set {Y1, Y2, Y3, Y4} and
suppose

• Y1: amount of contamination;

• Y2: human radioactive intake;

• Y3: effects on human health;

• Y4: political disruption.

The only conditional independence statement associated to the DAG of Figure 2.1 is
Y4 ⊥⊥ Y3, Y2 | Y1,θ, implying that, once the amount of contamination is known, hu-
man intake and effects on health are irrelevant to predict the political disruption. The
recursive factorisation associated to this DAG corresponds to

f(y1, y2, y3, y4 | θ) = f(y4 | y1,θ4)f(y3 | y2, y1,θ3)f(y2 | y1,θ2)f(y1 | θ1).

The n − 1 conditional independence statements defining a BN model are not the only
ones implied by a given model. The d-separation criterion [Lauritzen, 1996] provides
a rule to verify whether or not a generic conditional independence statement holds for a
BN model. For three disjoint subsets A, B and C of [n], the conditional independence
YA ⊥⊥ YB | YC ,θ holds iff {Yi : i ∈ C} separates {Yi : i ∈ A} from {Yi : i ∈ B} in
the moral graph of G (see Appendix B). Importantly, a set of conditional independence
statements does not uniquely identify a DAG and several DAGs can represent the same
set of conditional independences. Such DAGs are said to be equivalent. So for example,
the DAG in Figure 2.1 would still imply the same conditional independence structure if
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the edge between Y2 and Y3 were reversed. We discuss in more details in Section 2.3.4
how this issue is related to the concept of statistical causality.

We further note that the BN model provides the basis for fast computations of probabil-
ities through propagation techniques over the graph. Propagation is usually performed
over the junction tree of the DAG [see e.g. Smith, 2010], but also other, often approxi-
mated, methodologies exist [Cowell et al., 1999, Murphy et al., 1999]. Spiegelhalter and
Lauritzen [1990] introduced two conditions over the parameter vector θ that can allow
for computations to be fast but still exact.

Definition 2.3.9. For a BN over Y we say that θ respects the global independence
condition if ⊥⊥ i∈[n]θi.

Definition 2.3.10. Let θi = (θji)T
j∈[ni], ni ∈ Z≥1, i ∈ [n]. We say that the local

independence condition holds for a BN over Y if, for every i ∈ [n], ⊥⊥ j∈[ni]θji.

Together, local and global independence imply that the parameters are mutually inde-
pendent of each other. In Chapter 3 we introduce a generalisation of global independence
for BN models whose densities are elicited separately by different groups of experts and
show that this condition entails distributed group inferences.

Note that the notion of global independence cannot hold unless the parameter spaces
are variationally independent [Dawid, 2001, Dawid and Lauritzen, 1993].

Definition 2.3.11. If Θ =×i∈[n] Θi we say that the spaces Θ1, . . . ,Θn are variationally
independent.

Under the global independence assumption the following result from Spiegelhalter and
Lauritzen [1990] hold.

Proposition 2.3.12. If global independence holds for a BN with vertex set {Yi : i ∈ [n]},
then

f(y) =
∫

Θ
f(y,θ)dθ =

∫
Θ

∏
i∈[n]

f(yi | yΠi ,θi)π(θi)dθ =
∏
i∈[n]

f(yi | yΠi), (2.3.1)

where
f(yi | yΠi) =

∫
Θi

f(yi | yΠi ,θi)π(θi)dθi. (2.3.2)

Therefore under the assumption of global independence also the marginal distribution
over Y factorises according to the underlying DAG. This would not be true in general
without the global independence assumption.
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Another useful property arising from global independence is that Bayesian updating
given a sample x can be performed in a distributed fashion. The sample x does not
need to be complete in order for this to be the case as the following proposition from
Spiegelhalter and Lauritzen [1990] formalises. We let Fai ⊆ [n] and Dei ⊂ [n] be the
index sets of the family and the descendants of Yi, respectively, i ∈ [n].

Proposition 2.3.13. Suppose x is an ancestral sample from the same population of Y ,
meaning that if xi, the sample relative to Yi, is observed, then xA′i is observed as well.
Then, if global independence holds and letting I be the set of indices of either the vertices
whose children are not sampled or leaves of the graph, we have that

π(θ | x) =
∏
i∈I

∏
j∈Ai

π(θj | xFaj )
∏

k∈Dei

π(θk). (2.3.3)

Similar recursions hold for local independence as well which retain the independence of
the parameters a posteriori [see Smith, 2010, Spiegelhalter and Lauritzen, 1990].

We next consider Gaussian BNs, which define a Gaussian distribution for the random
vector Y respecting the conditional independences implied by a DAG. Given a DAG G,
we first define each vertex as a simple linear regression.

Definition 2.3.14. Let G be the DAG of a BN with vertex set {Yi : i ∈ [n]}. We say
that a vertex Yi, i ∈ [n], is defined as a DAG linear regression if

Yi = θ0i +
∑
j∈Πi

θjiYj + εi, (2.3.4)

where θji ∈ R are regression parameters and the error εi ∼ (0, ψi), i.e. εi has mean zero
and variance ψi ∈ R>0.

We extensively deal with these types of models in Chapter 5.

The following proposition, from Richardson and Spirtes [2002] and expressed here in the
form of Sullivant et al. [2010], then shows how to build a multivariate Normal distribution
from these regression specifications respecting the conditional independence statements
associated to the graph.

Proposition 2.3.15. Let Y = (Yi)T
i∈[n] be a random vector, where each Yi is defined

as a DAG linear regression, and εi = (εi)T
i∈[n]. Assume that ⊥⊥ i∈[n]εi, ε ⊥⊥ Y and

εi ∼ N(0, ψ), i.e. the errors follow a Normal distribution. Let Ψ = diag(ψ1, . . . , ψn),
meaning that Ψ is a diagonal matrix, and L be an upper triangular n×n matrix defined
as

Lji =

 θji, if j ∈ Πi,

0, otherwise.
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(a) Example of a Bayesian network with identical subnetworks.

Y
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(b) Class definition for the sub-
networks of Figure 2.2a.

Figure 2.2: Example of object orientation in Bayesian networks.

Define B = In − L, where In is the n × n identity matrix, and θ0 = (θ0i)T
i∈[n]. Then

Y ∼ N
(
(B−1)T

θ0, (B−1)TΨB−1
)

.

In a full Bayesian framework prior distributions for the regression parameters θji and
the error variances ψi need to be further provided, as, for example, the Normal Inverse
Gamma for the simple linear model shown in Appendix C.2.1.

To illustrate global and local independence for Gaussian BNs, let θT
i = (θ0i, ψi, θji)j∈Πi ,

i ∈ [n]. Global independence is then such that ⊥⊥ i∈[n]θi. Local independence on the
other hand assumes that every element of θi is independent of the rest, for every i ∈ [n].

2.3.2.3 Object Oriented Bayesian Networks. In complex large BNs identical
subnetworks are often repeated in different parts of the DAG. This is for example the
case in the DAG of Figure 2.2a, where the subnetworks within the two rectangles have
the same topology. Now assuming that Y ′i and Y ′′i , i ∈ [6]1, have the same sample
space and equal conditional probability densities, we can then represent the network as
an Object Oriented Bayesian Network (OOBN). As extensively discussed in Chapter 1,
the object oriented paradigm has proven to provide a convenient framework to represent
complex problems. We do not formally define this class of models [see Koller and Pfeffer,
1997], since this is beyond the scope of the thesis and requires the introduction of a rather
intricate notation. However, following Jensen et al. [2006] and Neil et al. [2000], we still
provide an intuitive example of this fairly recent technology.

Considering again the network in Figure 2.2a, each subnetwork within the rectangles
in the object oriented paradigm is an instantiation of a class, called object. Figure
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Figure 2.3: Object oriented representation of the Bayesian network of Figure 2.2a,
whose class is defined in Figure 2.2b.

2.2b shows the class definition for the repeated subnetworks of Figure 2.2a. Each class
consists of three types of vertices:

• input vertices: not true random variables, but artificial nodes that serve as ‘place-
holders’. In Figure 2.2b the input vertex is the dashed node Y which must have
the same state space of Y1;

• encapsulated vertices: vertices that are hidden outside of the class and that are
used only within the class. In Figure 2.2b the encapsulated vertices are Y2, Y3 and
Y4;

• output vertices: part of the class that is accessible from outside and that can be
connected to other classes. The output vertices of the class in Figure 2.2b are the
shaded nodes Y5 and Y6.

Encapsulated and output vertices are allowed to be objects, whilst input vertices must
be variables.

Given the class definition in Figure 2.2b, we can represent the BN of Figure 2.2a as the
OOBN reported in Figure 2.3. In this network the encapsulated vertices are hidden and
only input and output nodes of the class explicitly appear. Each rectangle is an object
and in each object the relative output nodes are connected to elements external to the
class. The dashed arrows into the input node indicate which node Y is a placeholder for
(in this case Y1 for both objects).

Even in this simple example the expressive power of OOBNs becomes apparent, mod-
ularising the overall problem in different layers formally separated. Of course in much
larger examples OOBNs provide an even more compact representation of the domain
under consideration: see for example Neil et al. [2000].
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2.3.2.4 Probabilistic Undirected Graphs. We now consider probability densities
f that can be described by an Undirected Graph (UG) G. These are used in particular
when there is no clear directional relationships between the variables under study. For
the purpose of the thesis we assume G to be always decomposable in the undirected case:
we motivate this assumption below. Just as in the directed case of Section 2.3.2.2, we
first introduce a class of densities which are in some sense compatible to the graph and
then define the class of UG models called Markov Networks (MNs). References about
these models are countless [see e.g. Castillo, 1997, Cowell et al., 1999, Lauritzen, 1996].
We follow here Dawid and Lauritzen [1993].

Definition 2.3.16. Let A,B ⊂ [n] and V (G) = {Yi : i ∈ [n]} be the vertex set of an
UG G. A density f over Y | θ is called Markov if, for any decomposition {Yi : i ∈ A},
{Yi : i ∈ B} of G, YA ⊥⊥ YB | YA∩B,θ

Definition 2.3.17. A decomposable MN model consists of a decomposable UG G with
vertex set {Yi : i ∈ [n]} together with a Markov density f .

Note that for each vertex Yi of an MN, the conditional independence statement

Yi ⊥⊥ Y[n]\{i} | YNei ,θ,

holds, where Nei is the index set of the neighbours of Yi. Thus, just as in the directed
case, Markov densities associated to a (decomposable) UG are the only ones entertain-
ing the separations implied by the graph. In order to deduce the associated Markov
factorisation as in the directed case, we first need to introduce the notion of consistency.

Definition 2.3.18. Let fA and fB be densities over YA | θ and YB | θ respectively,
A,B ∈ [n]. We say that fA and fB are consistent if they both yield the same density
over YA∩B | θ.

Now letting C and S be the sets of the indices of the cliques and the separators respec-
tively of an UG G, we have the following.

Lemma 2.3.19. The unique Markov density f over a decomposable UG G having con-
sistent densities as its clique marginals factorises as

f(y | θ) =
∏
C∈C f(yC | θC)∏
S∈S f(yS | θS)vS

,

where vS is the multiplicity of the separator S, θC , θS are the parameter vectors asso-
ciated to YC and YS, respectively, and C and S are the index sets of the cliques and the
separators, respectively.
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Figure 2.4: Example of a decomposable undirected graph with four vertices.

Given an order over the elements of C exhibiting the running intersection property
(see Appendix B), the density of a Markov density over a decomposable graph can be
alternatively written as, assuming the graph includes m cliques,

f(y | θ) =
∏

i∈[m]1

f(yRi | ySi ,θRi)f(yC1 | θC1),

where Ri = Ci \ Si.

Example 2.3.20. Consider the UG with vertex set {Y1, Y2, Y3, Y4} in Figure 2.4. The
conditional independence statement associated to this graph is Y4 ⊥⊥ Y1 | Y2, Y3,θ, and
therefore the associated density factorises as

f(y | θ) =
f(y1, y2, y3 | θ[3])f(y2, y3, y4 | θ[4]1)

f(y2, y3 | θ[3]1) ,

or alternatively as

f(y | θ) = f(y4 | y2, y3,θ4)f(y1, y2, y3 | θ[3]) = f(y1 | y2, y3,θ1)f(y2, y3, y4 | θ[4]1).

Just as in the directed case, conditions over the parameter vector can be imposed entail-
ing distributed inferences. For the purpose of this thesis we introduce only the strong
hyper Markov condition of Dawid and Lauritzen [1993].

Definition 2.3.21. A density π is strong hyper Markov for G if, for any decomposition
{Yi : i ∈ A}, {Yi : i ∈ B} of G, θA ⊥⊥ θB.

Since the cliques of a decomposable UG can be ordered to sequentially form a decom-
position, we have the following result from Dawid and Lauritzen [1993].

Lemma 2.3.22. If a density π for θ is strong hyper Markov then π(θ) =
∏
C∈C π(θC).

We do not show in detail how to build a distribution exhibiting the strong hyper Markov
condition. However we briefly note here that this can be straightforwardly done by
considering the Markov combinations of the marginal distributions over the cliques of
the graph [Massa and Lauritzen, 2010].
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The following proposition from Dawid and Lauritzen [1993] then shows how the strong
hyper Markov condition is associated to fast distributed Bayesian inference.

Proposition 2.3.23. Assume a vector X is sampled from the same population of Y
and assume the density π of θ is strong hyper Markov. Then, the posterior distribution
obtained by conditioning on the complete data X = x is the unique strong hyper Markov
distribution specified by the clique-marginal prior distributions given by π(θC | x) =
f(xC | θC)π(θC).

Therefore Bayesian updating can be performed locally within each clique whilst retaining
the strong hyper Markov condition. Note that the above result does not hold in general
for non-decomposable undirected models. Whilst global independence is retained after
observing certain incomplete datasets, strong hyper Markov laws are also broken by any
incomplete observation. In Chapter 3 however we are able to show that for certain sets
of incomplete observation the strong hyper Markov property can be retained if Bayesian
updating is performed simultaneously for all the elements of this set.

We now consider the class of MN models whose associated distribution is Gaussian. A
Gaussian MN with decomposable UG G, V (G) = {Yi : i ∈ [n]}, is defined as Y | µ,Σ ∼
N(µ,Σ), where µ = (µi)T

i∈[n] ∈ Rn and Σ is an n × n covariance matrix3 such that
if (Yi, Yj) 6∈ E(G) =⇒ Σ−1

ij = 0, where Σ−1
ij is the entry of Σ−1 in position (i, j).

So for example the covariance matrix associated to the Gaussian MN with graph in
Figure 2.4 is such that its inverse has zero entries in positions (1, 4) and (4, 1). Now
for simplicity let µ = 0. Such a model class is usually referred to as a covariance
selection model [Wermuth, 1976]. Recall from Appendix C.2.3 that the Inverse Wishart
distribution allows for conjugate learning with Normal models when defined as a prior
of the covariance matrix. Let Σ ∼ IW(A, d), where A is a positive semidefinite n × n
matrix and d ∈ Z≥n. It is well known that for a subset B ∈ [n], YB ∼ N(0,ΣB,B)
and ΣB,B ∼ IW(AB,B, d), where, for a matrix Σ, ΣB,B is its submatrix with rows and
columns i ∈ B [see e.g. Dawid and Lauritzen, 1993]. For every clique C ∈ C of G,
let YC | ΣC,C ∼ N(0,ΣC,C) and assume the covariance ΣC,C has an Inverse Wishart
prior distribution IW(AC , d). A unique strong hyper Markov distribution for the whole
graph G having as marginals over the cliques these Inverse Wishart distributions exists if,
calling Sij = Ci∩Cj , the matrices ACi

Sij ,Sij
and ACj

Sij ,Sij
are identical.4 We then say that Σ

follows an hyper Inverse Wishart distribution with parameters A and d, Σ ∼ HIW(A, d),
where A is such that AC,C = AC , for C ∈ C.

3A covariance matrix is a symmetric positive semidefinite matrix with entries in R>0 on the diagonal
and in R otherwise.

4This result follows from Proposition 5.9 of Dawid and Lauritzen [1993] which we have not introduced
here since it would require the introduction of additional concepts not relevant for the thesis. In a
nutshell, this result is true because the Inverse Wishart is conjugate for the Normal covariance selection
model and this distribution is a member of the exponential family.
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For the graph in Figure 2.4, let Σ[3],[3] ∼ IW(A123, d) and Σ[4]1,[4]1 ∼ IW(A234, d). Then
an hyper Inverse Wishart distribution for this graph having this marginals exists if
A234

[3]1,[3]1 = A123
[3]1,[3]1 .

Suppose now that a vector of observations x = (xT
i )T
i∈[m] from the same family of Y has

been collected, where xi = (xij)T
j∈[n]. Assume an hyper Markov law is constructed from

the clique marginals as exemplified above. Then from Appendix C.2.3 and Proposition
2.3.23 we know that for the covariance selection model the posterior density of Σ | x is
strong hyper Markov, where each marginal over the submatrix associated with a clique
ΣC,C , C ∈ C, follows an Inverse Wishart with parameters AC +mSC,C and d+m, where
S is equal to m−1∑

i∈[m] xix
T
i (see Appendix C.2.3). This can be easily noted within our

example. The marginal posteriors over the cliques are A123 ∼ IW(A123 +mS[3],[3], d+m)
and A234 ∼ IW(A234 + mS[4]1,[4]1 , d + m). It then holds that A123

[3]1,[3]1 + mS[3]1,[3]1 =
A234

[3]1,[3]1 +mS[3]1,[3]1 , where

mS[3]1,[3]1 =

 ∑
i∈[m] x

2
i2

∑
i∈[m] xi2xi3∑

i∈[m] xi2xi3
∑
i∈[m] x

2
i3

 (2.3.5)

2.3.2.5 Probabilistic Chain Graphs. Probabilistic Chain Graph (PCG) models
are a hybrid representation of undirected and directed graphical models, allowing for
the underlying graph G to be mixed and more specifically to be a Chain Graph (CG).
We give here only a brief introduction to this class of models [see e.g Cowell et al., 1999,
Drton, 2009, Frydenberg, 1990, Lauritzen, 1996, for more details]. These are especially
useful when there are both directional and non-directional relationships between the
variables associated to the vertices of the underlying graph. As with the earlier models,
we first introduce the relative Markov property, then derive the associated factorisation
and in conclusion define the model. We let Bdi be the index set of the variables in the
boundary of Yi, i ∈ [n].

Definition 2.3.24. A probability density f over Y | θ is said to obey the chain Markov
property relative to a CG G with vertex set {Yi : i ∈ [n]} and m strong components if,
for every vertex Yi, i ∈ [n], Yi ⊥⊥ YA′i\Bdi

| YBdi
,θ.

Proposition 2.3.25. If a density f obeys the chain Markov property relative to a CG
G with vertex set {Yi : i ∈ [n]}, then its density factorises as

f(y | θ) =
∏
i∈[m]

f
(
yCi | yΠCi

,θCi

)
,

where C1, . . . , Cm are the index sets of the variables in the strong components of G and
ΠCi = ∪j∈CiΠj.
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Y1

Y2

Y3

Y4

Y5 Y6

Y7

Figure 2.5: Example of a probabilistic chain graph model.

Y1, Y2, Y3 Y4, Y5 Y6, Y7

Figure 2.6: Representation of the chain graph in Figure 2.5 as a directed acyclic
graph.

We are now ready to formally define the model.

Definition 2.3.26. A PCG model consists of a CG G together with a density f respecting
the chain Markov property.

Example 2.3.27. Consider the PCG in Figure 2.5. It can be deduced from this graph
that the following conditional independence statements need to hold for a chain Markov
distribution

Y4 ⊥⊥ Y1, Y3 | Y2, Y5,θ, Y5 ⊥⊥ Y1, Y2, Y3 | Y4,θ,

Y6 ⊥⊥ Y1, Y2, Y3 | Y4, Y5, Y7,θ, Y7 ⊥⊥ Y1, . . . , Y5 | Y6,θ,

and the associated density can be factored as

f(y | θ) = f(y6, y7 | y4, y5,θ67)f(y4, y5 | y3,θ45)f(y1, y2, y3 | θ123).

Note that each PCG can be represented by a less expressive DAG whose vertex set
corresponds to the strong components of the underlying CG. So for example the PCG
in Figure 2.5 can be transformed into the DAG of Figure 2.6.

2.3.2.6 Staged and Event Trees. All the classes of models defined so far are able to
depict standard conditional independence statements only. The class of event tree models
we discuss in this section is able to explicitly represent context specific independences.
Event trees are such that their nodes are the situations in which a process might find
itself and the edges emanating from a node are the possible unfoldings given the current
situation. It has been extensively discussed in the literature that these models are
extremely expressive in describing how processes might unfold. These are especially
useful in the cases where the variables are ordered in a way that follows the narrative of
the events [Freeman and Smith, 2011, Shafer, 1996, Smith, 2010].
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Figure 2.7: Example of an event tree on three variables with the additional represen-
tation of its stages in different colors.

Let T be a directed tree, Λ(v, T ) denote the set of paths from v ∈ V (T ) to a leaf node
of T and Y = Λ(s0, T ), where s0 is the root of the tree, be the set of root-to-leaf paths.
Each path y ∈ Y is a so-called atomic event, i.e. a possible unfolding of events. Finally
let Ys denote the set of children of a situation s ∈ S(T ).

Definition 2.3.28. An event tree is a directed tree T together with a random variable
Ys for each situation s ∈ S(T ) with sample space Ys defined conditional on having
reached vertex s. The distribution of Ys is determined by the floret probability vector
θs = (θss′)T

s′∈Ys
, where θss′ = P(Ys = s′).

The expressive power of event trees can be increased by identifying probabilities associ-
ated to different edges that are equal. Trees can then be embellished by a colouring of
the edges, where two edges have same colour if their associated probabilities are equal.

Definition 2.3.29. A staged tree is an event tree where, for some s, s′ ∈ S(T ), the
floret probability vectors are identified, θs = θs′, and equally coloured. Then s and s′

are in the same stage. We let W be the set of stages of T .

Example 2.3.30. Suppose a problem is modelled with three binary random variables:
Y1, release from a source term; Y2, level of contamination in the surrounding area; Y3,
political disruption in the region due to the release. Suppose Y1 = Y3 = {yes, no}
and Y2 = {high, low}. It is assumed that, if there has been a release, the level of
contamination does not provide any information to predict the political disruption. This
problem could then be modelled by a BN with vertex set {Y1, Y2, Y3} and edge set
{(Y1, Y2), (Y1, Y3)}.

However the BN representation forces us to retain information which is meaningless in
this context, as for instance the atom (no,high,yes) which has probability zero. This
is on the other hand explicitly modelled in the staged tree in Figure 2.7. In this tree
the leftmost two edges are the possible outcomes of Y1, the edges in the center are
the outcomes of Y2 given the different levels of Y1, whilst the rightmost edges coincide
with the outcomes of Y3 given Y2 and Y1. In the lower part of the tree, associated
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Figure 2.8: Tree representation of the Bayesian network of Example 2.3.30 .

to Y1 = no, there are no outcomes for the political disruption variable, as these have
probability zero. The set of situations of this tree includes vertices {v0, . . . , v6} and
leaves {v7, . . . , v10}. Its stages are w0 = {v0}, w1 = {v1}, w2 = {v2}, w3 = {v3, v4}.
Furthermore W = {w0, . . . , w3}. The tree representation of the associated BN model is
in Figure 2.8. Such a tree is extremely regular in its colouring and each of its root to
leaf paths have the same length: a property exhibited by the tree representation of any
BN (see for more details Section 5.6.2).

Although the colouring of the edges entails an improved representation of the overall
structure of the problem at hand, conditional independences are still difficult to read
from the graph. In addition as the number of variables increases, the size of the tree
becomes quickly too large to be concisely reported. The class of models we introduce
in the following section is able to compactly represent every conditional independence
entertained.

2.3.2.7 Chain Event Graphs. Chain Event Graphs (CEGs) [Smith and Anderson,
2008] are models capable of representing context specific conditional independences in
a single compact graphical representation. CEGs are constructed by starting with a
staged tree, therefore requiring variables to be discrete, and then merging into a single
vertex certain situations that are in the same stage.

Definition 2.3.31. We say that two situations s and s′ are in the same position if
the subtrees with roots s and s′, respectively, have the same topology and the same edge
colouring. We let B denote the set of positions of a staged tree.

Note that two situations in the same position are by definition also in the same stage,
whilst it does not necessary follows that two situations in the same stage are also in the
same position.
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Figure 2.9: A chain event graph model representing the staged tree in Figure 2.7.

Example 2.3.32. Considering the staged tree in Figure 2.7, we can see that for this
example the set of stages coincides with the one of positions.

Definition 2.3.33. A CEG is the graph obtained by collapsing a staged tree into its
positions. Its vertex set is equal to {B ∪ b∞}, where b∞ is the vertex collecting all the
leaves of the tree. Its edge set is such that

• there is an edge (bi, bj), bi, bj ∈ B, for every edge from a generic vertex v ∈ bi to
any vertex v′ ∈ bj;

• there is an undirected edge between any two positions in the same stage;

Example 2.3.34. The CEG representation of the staged tree of Figure 2.7 is shown
in Figure 2.9, where we further annotated and coloured the edges as in Barclay et al.
[2013].

We chose the CEG as a representative model for context specific independences for two
main reasons. First, compared to other models capable of representing context specific
conditional independences, the CEG consists of a single graph. Furthermore Smith and
Anderson [2008] showed that every discrete BN can be represented as a CEG, whilst the
converse does not hold. This is not case for example for probabilistic decision graphs
[Jaeger, 2004] and context specific BNs [Boutilier et al., 1996]. Barclay et al. [2013] nicely
discussed how to convert a BN into a CEG model and how to measure the advantages of
the latter representation. Second, a wide range of methods to perform various statistical
analyses have been developed for this model class [see e.g. Barclay et al., 2013, 2014,
Freeman and Smith, 2011, Thwaites and Smith, 2015, Thwaites et al., 2010].

Importantly, under assumptions similar to local and global independence, but customised
to staged trees and CEGs, Bayesian updating can be performed in a distributed way
through the Multinomial-Dirichlet recursions illustrated in Appendix C.1.2. In Chapter
3 we generalise these independences for CEGs to take into account that probabilities
over the graph are elicited by different groups of experts. Suppose wi ∈ W has ni
emanating edges with associated probability vector θi = (θij)T

j∈[ni], such that θij ∈ (0, 1)
and

∑
j∈[ni] θij = 1, j ∈ [ni], i ∈ [n]. For a random sample xT = (xT

i )i∈[n], where
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xi = (xij)T
j∈[ni] is the vector of the number of units that starts at stage wi and go

through the emanating edges, it holds that

f(x | θ) ∝
∏
i∈[n]

∏
j∈[ni]

θ
xij

ij , (2.3.6)

where we further assumed that xi ⊥⊥ xj | θ, i, j ∈ [n], and θT = (θT
i )i∈[n]. Therefore the

likelihood is multinomial. Now assuming θ has mutually independent parameters, the
independence is retained a posteriori when the prior distribution is updated with the
likelihood in equation (2.3.6). In particular this is conjugate if each stage probability
vector θi is given a Dirichlet prior distribution with parameter ai = (aij)T

j∈[ni] ∈ Rni
>0.

The posterior is then again Dirichlet with parameter ai+xi. Freeman and Smith [2011]
proved that assuming mutual independence of the parameters and some other fairly mild
conditions, the prior distribution is necessarily Dirichlet.

2.3.3 Dynamic Models

In this section we deal with models for processes that are observed at several points in
time, usually called time series. The graphical models presented so far correspond to
a fixed time, but now the random variables associated to the vertices of these will be
allowed to vary in time, whilst, in most cases, the structure of the underlying graph-
ical representation will remain constant through time. Such models allow for enough
flexibility to represent situations where the relevant factors vary through time.

Let {Yt}t∈[T ] = {Yi(t) : i ∈ [n]}t∈[T ] be a n-dimensional time series with finite time
horizon T , where {Yi(t)}t∈[T ], i ∈ [n], is a univariate time series. We let Yi and Y =

×i∈[n] Yi be the sample spaces of Yi(t) and Y (t) respectively, for any t ∈ [T ]. The density
function of a generic Yi(t) is parametrised by θi(t) with sample space Θi. Let YA(t)T =
(Yi(t))i∈A, Y t

A = (YA(1)T, . . . ,YA(t)T)T, Y[n](t) = Y (t) and θtA = (θA(1)T, . . . ,θA(t))T,
A ⊆ [n]. We denote with lower case letters instantiations of these random variables and
vectors, and for any t ∈ [T−1] the sample space of (Y (t),Y (t+1)) is Y×Y . Finally, we
denote with It the information set at time t, which includes all the relevant information
available to the DM. We assume in this section that It = {It−1,Y (t− 1)}, t ∈ [T ]1.

2.3.3.1 Dynamic Linear Models. Based on a distributed version of the Kalman
Filter [Kalman, 1960], the theory of Dynamic Linear Models (DLMs) was introduced in
Harrison and Stevens [1976] and described in the seminal book of West and Harrison
[1997]. This theory allows for a coherent updating of probabilities in dynamic frame-
works, which can be then embedded within the graphical models we introduce in the
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Figure 2.10: Conditional independence structure underlying the dynamic linear model
class.

following sections. The key property of such models is the underlying conditional inde-
pendence structure which assumes that at each time point all the relevant evidence is
summarised in the distribution θ(t) | θ(t−1), where θ(t)T = (θi(t)T)i∈[n] has dimension
r, and that consequently all the relevant information to predict Y (t) is synthesised in
the distribution of θ(t). This is depicted in Figure 2.10 implying, for each t ∈ [T − 1]1,
Y (t) ⊥⊥ It−1,θt−1 | θ(t), and θ(t) ⊥⊥ It−1 | θ(t− 1).

We now introduce the general form of the Normal DLM.

Definition 2.3.35. The general Normal DLM is defined by the following three equations.

Y (t) = F (t)Tθ(t) + v(t), v(t) ∼ N (0, V (t)) , (2.3.7)

θ(t) = G(t)θ(t− 1) +w(t), w(t) ∼ N (0,W (t)) , (2.3.8)

θ(1) | I0 ∼ N (m(0), C(0)) ,

where V (t), W (t) and C(0) are known covariance matrices of dimensions n × n, r × r
and r × r, respectively, F (t) and G(t) are generic matrices of dimensions n × r and
r×r, respectively, m(0) ∈ Rn and the errors v(1), . . . ,v(T ),w(1), . . . ,w(T ) are mutually
independent, where v(t) and w(t), t ∈ [T ], have dimension n and r respectively,

Equation (2.3.7) is the observation equation specifying the distribution of Y (t) condi-
tional on the system vector θ(t), having mean F (t)Tθ(t) and variance V (t), also called
observational variance matrix. The matrix F (t) is referred to as the regression matrix,
whilst v(t) is the observational error. Equation (2.3.8) is the system evolution equation,
which specifies how the values of the parameter vector evolve trough time. The matrices
G(t) and W (t) are called respectively system transfer and system variance matrices.
The vector w(t) is called system error.

Note that alternatively the general Normal DLM can be equivalently defined by substi-
tuting equations (2.3.7)-(2.3.8) with the following two conditional distributional specifi-
cations:

Y (t) | θ(t) ∼ N
(
F (t)Tθ(t), V (t)

)
, θ(t) | θ(t−1) ∼ N (G(t)θ(t− 1),W (t)) .

Example 2.3.36. Special cases of the general Normal DLM model are:
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• a univariate DLM is such that Y (t) has dimension 1 (it is therefore a scalar);

• a linear univariate DLM is such that F (t) = (1, Xi(t))T
i∈[r−1], where Xi(t) is a

regression variable, i ∈ [r − 1];

• a univariate regression DLM is such that the entries of F (t) are generic functions
of X1(t), . . . , Xr−1(t).

Although we do not focus in this thesis on modelling issues, we note here that the theory
of DLMs comprises a large variety of methodologies to model for example both seasonal
and polynomial temporal trends. The concept of discount factors is also widely used
to elicit the values of the observational variance errors. Importantly, the conditional
independence structure underlying DLMs provides a natural framework to intervene on
the system by for example changing the value of some of the model’s parameters. This
strategy is usually implemented when the model has a poor forecasting performance.

The assumption of Gaussianity in Definition 2.3.35 is not strictly necessary but it entails
some computational advantages. Under this assumption the updating equations of the
parameters and the observables can be written in closed form and follow a Normal
distribution, both in the univariate and the general case. The same property holds for
the forecasting distributions, describing the behaviour of the system k-steps ahead in
the future, for some k ∈ Z≥1. The associated recurrences when variances are known
then reduce to the familiar Kalman Filter recurrences.

In practical applications the elicitation of the observational variance is critical and often
prohibitive. However, there might be some information regarding its behaviour. Thus
in practice V (t) is often assumed unknown and a prior distribution is elicited. In the
univariate case, an Inverse Gamma distribution can be given to this error, entailing a
conjugate analysis as shown in Appendix C.2.1. It is then possible to obtain closed re-
currences for both the updating and the forecasting distributions which, unconditionally
on V(t), follow a T-distribution (see again Appendix C.2.1). Although we have shown
in Appendix C.2.3 a conjugate analysis for the multivariate Normal model, this does
not extend straightforwardly in a dynamic setting as in the univariate case to allow for
sequential conjugate learning. We note here though that a variety of methods have been
developed to approximate both numerically and analytically these recurrences [see West
and Harrison, 1997]. Most importantly in the following section we introduce a class of
multivariate DLMs that entertains exact closed form updating and forecasting routines.

2.3.3.2 Multiregression Dynamic Models. Queen and Smith [1993] introduced
the class of Multiregression Dynamic Models (MDMs), multivariate DLMs exhibiting a
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Figure 2.11: A directed acyclic graph associated to the conditional independence
structure of a multiregression dynamic model.

conditional independence structure between the component time series which remains
constant through time. Although each variable is modelled through a simple univari-
ate regression DLM, where the regressors are specified by the conditional independence
structure, the model class of MDMs is in general non Gaussian. The qualitative struc-
ture underlying an MDM can be represented through a DAG whose vertices are the
component time series. Importantly, the well known BN model we reviewed in Section
2.3.2.2 is a special case of the MDM.

Definition 2.3.37. An MDM for the time series {Y (t)}t∈[T ] is defined by a DAG G
with vertex set {Y T

i : i ∈ [n]} together with the following n observation equations, system
equation and initial information:

Yi(t) = Fi(t)Tθi(t) + vi(t), vi(t) ∼ (0, Vi(t)), i ∈ [n];
θ(t) = G(t)θ(t− 1) +w(t) w(t) ∼ (0,W (t));
θ(0) | I0 ∼ (m(0), C(0)).

The system vector is θi(t) ∈ Rri and Fi(t), of dimension ri, is an arbitrary function
of ytΠi

and yt−1
i , but not ytDei

and yi(t). The scalar observation variances Vi(t) ∈
R>0, i ∈ [n], can be either known or unknown. The r × r matrices, r =

∑n
i=1 ri,

G(t) = blockdiag(G1(t), . . . , Gn(t)), W (t) = blockdiag(W1(t), . . . ,Wn(t)) and C0 =
blockdiag(C1(0), . . . , Cn(0)), are assumed known and such that Wi(t) and Ci(t) are co-
variance matrices, whilst Gi(t) is a generic matrix, all of dimension si × si, i ∈ [n].5

The errors v1(t), . . . , vn(t),w1(t), . . . ,wn(t), where wi(t) ∼ (0,Wi(t)), are mutually in-
dependent.

Example 2.3.38. Consider a time series {Y (t)}t∈[T ] = {Y1(t), Y2(t), Y3(t), Y4(t)}t∈[T ].
An MDM having the conditional independence structure depicted by the DAG in Figure
2.11 would have observation equations in which F1(t) is a function of yt−1

1 and, for
i ∈ [4]1, Fi(t) is a function of yti−1 and yt−1

i .

We now report from Queen and Smith [1993] two key results associated to MDMs. For
ease of notation we assume the observational variances to be known, but these results
straightforwardly generalise to the case of unknown observational variances.

Proposition 2.3.39. For an MDM over a time series {Yi(t) : i ∈ [n]}t∈[T ], we have
that ⊥⊥ i∈[n]θi(t) | yt−1 and θi ⊥⊥ yt[n]\Fai

| ytFai
.

5blockdiag denotes a block-diagonal matrix.
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The first conditional independence in Proposition 2.3.39 indicates that the parameters
associated to different component time series remain independent of each other through
time. The second one guarantees that a parameter θi(t), given the past observations of
the variables with indices in the family set, is independent of the rest of the observed
data. We show in Chapter 3 that these independences guarantee the MDM is an ideal
model for the aggregation of expert judgements in the class of problems we address in
this thesis.

Because of these results, we note that the overall updating of the multivariate time series
can be performed locally for each of the component time series independently. Each of
these follows, conditionally on the series with indices in the parent set, a simple univariate
regression DLM. Therefore all the technology briefly reviewed in Section 2.3.3.1, as for
example intervention and seasonal trends, can be directly transferred into MDMs.

Note that there is no assumption of Gaussianity in the definition of the MDM. However
a Normal MDM can be defined such that the errors vt(i) and wt follow a Gaussian
distribution. In such cases the overall distribution is non Gaussian, but the forecasting
and updating distributions can still be computed analytically and in closed form using
the DLM machinery. Therefore MDMs, although being multivariate DLMs, do not
need any approximated method. The following proposition formalises this fundamental
observation.

Proposition 2.3.40. For an MDM over a time series {Yi(t) : i ∈ [n]}t∈[T ], it holds that

f(y(t),θ(t) | It−1) =
∏
i∈[n]

f(yi(t) | yΠi(t),θi(t), It−1)π(θi(t) | It−1). (2.3.9)

and
f
(
y(t) | yt−1

)
=
∏
i∈[n]

gt,i
(
ytFai

,θi(t)
)
, (2.3.10)

where
gt,i =

∫
Θi

f
(
yi(t) | ytΠi

,yt−1
i ,θi(t)

)
π
(
θi(t) | yt−1

Fai

)
dθt(i). (2.3.11)

Proposition 2.3.39 is a generalisation of the distributed learning property in BNs under
the assumption of global independence we formalised in Proposition 2.3.13.

Example 2.3.41. For the MDM in Figure 2.11, equation (2.3.9) can be written as,
letting I = It−1 for ease of notation,

f(y(t),θ(t) | I) = f(y1(t) | θ1(t), I)
∏
i∈[4]1

f(yi(t) | θi(t), yi−1(t), I)
∏
j∈[4]

π(θj(t) | I).
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The terms in equation (2.3.11) appearing in the forecasting distribution of equation
(2.3.10) can be written for this example as

gt,i =


∫
Θi
f
(
yi(t) | yt−1

i ,θi(t)
)
π
(
θi(t) | yt−1

i

)
dθi(t), i = 1,∫

Θi
f
(
yi(t) | yt−1

i ,yti−1,θi(t)
)
π
(
θi(t) | yt−1

i ,yt−1
i−1

)
dθi(t), i ∈ [4]1.

We now introduce a special case of the MDM class, the linear MDM [Queen and Smith,
1993], which is very simple to work with.

Definition 2.3.42. A Linear Multiregression Dynamic Model (LMDM) is an MDM
where the errors are assumed to be Gaussian and each component time series is modelled
as a univariate linear DLM.

In an LMDM, at each time point, each Yi(t) is modelled as a linear regression with
the contemporaneous parent variables as regressors. Therefore the LMDM is a dynamic
extension of the Gaussian BN model introduced in Proposition 2.3.15.

Example 2.3.43. The observation equations of an LMDM respecting the DAG in Figure
2.11 (and using an obvious generalisation of the notation in equation (2.3.4)) are as
follows

Y1(t) = θ01(t) + v1(t), Y2(t) = θ02(t) + θ12(t)Y1(t) + v2(t),

Y3(t) = θ03(t) + θ23(t)Y2(t) + v3(t), Y4(t) = θ04(t) + θ34(t)Y3(t) + v4(t).

Queen and Smith [1993] and Queen et al. [2008] described methods to analytically
compute the first two moments of Y (t) under the assumption of an LMDM. These
simply consist of a sequential use of the tower properties of the first two moments.
Many of the results we present in the following chapters use similar techniques.

Because of its independence properties and its flexibility, the MDM has now been suc-
cessfully applied in practice in many diverse domains: traffic flows [Anacleto et al., 2013],
biology [Oates, 2013], brain connectivity [Costa et al., 2015], brand sales [Queen, 1994]
and finance [Zhao and West, 2015]. Furthermore, a wide tool-kit of more advanced mod-
elling techniques has now been implemented within MDMs to allow for causal reasoning
[Queen and Albers, 2009], model choice and averaging [Costa et al., 2015, Zhao and
West, 2015] and heteroscedasticity [Anacleto et al., 2013].

2.3.3.3 Dynamic Chain Graphs. Although the MDM allows for great flexibility in
modelling multivariate dynamic domains, its underlying DAG structure implies the pres-
ence of directional associations only and does not allow for any symmetric relationship.
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Figure 2.12: Dynamic variant of the chain graph model in Figure 2.5.

To address this issues, Queen and Smith [1992] and Anacleto and Queen [2013] devel-
oped the Dynamic Chain Graph (DCG) model, a multivariate DLM whose underlying
conditional independence structure can be represented by a CG.

For the purpose of this section only, let Y (t) be partitioned into N vector time series
of dimensions n1, . . . , nN ,

∑
i∈[N ] ni = n, so that Y (t)T = (Yi(t)T)i∈[N ] where Yi(t)T =

(Yij(t))j∈[ni]. Let Y t
ij = (Yij(1), . . . , Yij(t))T. Suppose the independence structure is

such that any two Y T
ij and Y T

ik are connected by an undirected edge in the underlying
CG, j, k ∈ [ni], i ∈ [N ].

Definition 2.3.44. A DCG consists of a CG G, V (G) = {Y T
ij : i ∈ [N ], j ∈ [ni]},

together with the following N observations equations, system equation and initial infor-
mation:

Yi(t) = Fi(t)Tθi(t) + vi(t), vi(t) ∼ (0, Vi(t)), i ∈ [N ],
θ(t) = G(t)θ(t−1) +w(t), w(t) ∼ (0,W (t)),
θ(1) | I(0) ∼ (m(0), C(0)).

The vector Fi(t)T =
(
Fij(t)T

)
j∈[ni]

includes the subvectors Fij(t) ∈ Rrij known functions

of yt−1
i and ytΠij

, where Πij is the set of the indices of the parents of Y T
ij in G, j ∈ [ni].

The system vector θ(t)T = (θi(t)T)i∈[N ] ∈ Rr, where θi(t) ∈ Rri is the system vector of
Yi(t), with ri =

∑
j∈[ni] rij and r =

∑
i∈[N ] ri. The ni×ni covariance matrix Vi(t) is the

observational variance for Yi(t). The r×r matrices G(t) = blockdiag(G1(t), . . . , GN (t)),
W (t) = blockdiag(W1(t), . . . ,WN (t)) and C(0) = blockdiag(C1(0), . . . , CN (0)) are as-
sumed known and such that Wi(t) and Ci(0) are ri × ri covariance matrices and Gi(t)
is a generic matrix. The errors v1(t), . . . ,vN (t),w1(t), . . . ,wN (t), wi(t) ∼ N(0,Wi(t)),
are assumed mutually independent.

Example 2.3.45. Consider the DCG defined by the CG of Figure 2.12. Since the topol-
ogy of this CG is the same as the one in Figure 2.5, this DCG has three strong com-
ponents, corresponding, for each time slice t ∈ [T ], to Y1(t) = (Y11(t), Y12(t), Y13(t))T,
Y2(t) = (Y21(t), Y22(t))T and Y3(t) = (Y31(t), Y32(t))T. Note that in this case we have
Y (t)T = (Y1(t)T,Y2(t)T,Y3(t)T), as confirmed by Figure 2.6. The observation equations
are specified by the following vectors: F1(t)T = (F11(t)T,F12(t)T,F13(t)T), functions of
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Figure 2.13: Example of a 2-time-slice Bayesian network for a multivariate time series
comprising four univariate series.

yt−1
1 ; F2(t)T = (F21(t)T,F22(t)T), functions of yt−1

2 , where F21(t) is also a function of
yt13; F3(t)T = (F31(t)T,F32(t)T), function of yt−1

3 , where F31(t) is also a function of yt2.

It can be shown that the results in Propositions 2.3.39 and 2.3.40 for MDMs hold for
DCGs if applied to the chain component observation series Yi(t) and their associated
system vectors θi(t), i ∈ [N ]. Therefore in DCGs the sequential updating and forecast-
ing of the relevant probabilities can be distributed across the chain components of the
underlying CG.

2.3.3.4 Dynamic Bayesian Networks. The two described multivariate models are
not as commonly used in practice as the Dynamic Bayesian Network (DBN) model class
[Murphy, 2002]. DBNs extend the BN framework to dynamic and stochastic domains.
We discuss these models in this thesis to provide an example of a model class whose
conditional independence structure is not retained as time progresses and therefore do
not enjoy closed form updating routines.

For the purpose of this thesis, and as often in practice, we consider only stationary,
feed-forward DBNs respecting the first order Markov assumption [see e.g. Oates, 2013].
These DBNs can be simply described by an initial distribution over the first time point
and a BN having as vertex set two generic time slices. Such latter BN is usually called
2-Time slice Bayesian Network (2-TBN).

Definition 2.3.46. A 2-TBN for {Y (t)}t∈[T ] is a BN with DAG G such that, fixed a
t ∈ [T − 1], V (G) = {Yi(t), Yi(t+ 1) : i ∈ [n]}, any vertex Yi(t) has no parents and there
are no edges (Yi(r), Yj(r)), i, j ∈ [n], r = t, t+ 1.

Definition 2.3.47. A DBN for the time series {Y (t)}t∈[T ] is a pair (G,G′), such that G
is a BN with vertex set V (G) = {Yi(1) : i ∈ [n]}, and G′ is a 2-TBN such that its vertex
set V (G′) is equal to {Yi(t), Yi(t+ 1) : i ∈ [n]}.

It is therefore straightforward to notice that a recursive formula for the density function
of a DBN similar to the one for BNs in Lemma 2.3.6 exists. This is because a DBN can
be thought of as the concatenation of BNs.
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Y1(1) // Y1(2) // Y1(3) // Y1(4)

Y2(1) //

;;

Y2(2) //

;;

Y2(3) //

;;

Y2(4)

Y3(1) //

;;

Y3(2) //

;;

Y3(3) //

;;

Y3(4)

Y4(1) //

;;

Y4(2) //

;;

Y4(3) //

;;

Y4(4)

Figure 2.14: Unrolled version of the dynamic Bayesian network of Example 2.3.48
with 2-time-slice Bayesian network of Figure 2.13.

Example 2.3.48. The BN in Figure 2.13 is a valid 2-TBN because its topology re-
spects the conditions of Definition 2.3.46. Suppose a DBN has such 2-TBN and the BN
associated to the initial distribution over Y (1) has empty edge set, i.e. represents the
independence model in Definition 2.3.4. Then its probability density function factorises
as (suppressing the dependence on the parameter vector for ease of notation)

f
(
yT
)

=
∏
i∈[4]

f(yi(1))
∏
t∈[T ]1

f(y4(t) | y4(t−1))
∏
j∈[3]

f(yj(t) | yj(t−1), yj+1(t−1))

Although DBNs entail an effective recursive factorisation of the associated density func-
tion, thus requiring a low number of probabilities to be elicited in order to fully specify
the model, inference in such models cannot be performed as easily as in both BNs and
MDMs. This is because the initial conditional independence structure is broken through
time. As shown in Figure 2.14 [from Boyen and Koller, 1998], the so-called unrolled
version of the DBN of Example 2.3.48, after a small number of time steps all the vari-
ables in a same time slice become correlated with each other. Independence can only be
retained if each component time series is independent of the others, i.e. if the 2-TBN
has edges of the type (Yi(t), Yi(t+ 1)) and an initial distribution described by an inde-
pendence model. Therefore the efficient and distributed recursions for both inference
and forecasting associated to MDMs and DCGs do not transfer to generic DBNs. This
is the reason why DBNs are not an effective model class for exact aggregation meth-
ods in the problems we address in Chapter 3. However, we note here that a variety
of methodologies based on stochastic approximated methods have been developed for
tractable inferences in such models [Boyen and Koller, 1998, Koller and Lerner, 2001].

2.3.4 Causality

Statistical reasoning has historically largely avoided investigating causal inferences. Clas-
sical methods, as for example regression analysis, are in general only able to predict new
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values of a variable given the values of a set of covariates, and how these relate to the
response variable. Until recently, there has not been a formal study of causal relation-
ships between sets of random variables to assess, for example, whether a variable can be
considered as a cause for another one or not. However, artificial intelligence researchers
such as Pearl [2000] and Spirtes et al. [1993], provided a systematic study of the causal
mechanisms underlying a given hypothesised BN model when certain variables are ma-
nipulated and fixed to take a certain value in their sample space. This theory supposes
the existence of an underlying idle system, i.e. one where its variables are observed and
not manipulated to a certain value.

We introduce here the concept of causality since, for the purpose of decision support, it
is often helpful to match data coming from experiments in a laboratory, where variables
are held fixed to a particular value, to observational one, to provide a revised and more
focused specification of the relevant probabilities.

Shafer [1996] discusses causal reasoning for models depicted by trees. As also suggested
by Smith [2010], trees are particularly suitable to represent causal relationships, since
these can uniquely describe the actual narrative underlying the unfolding of events. We
also note here that causal reasoning is more tenable for Bayesian decision analysis than
in pure inferential reasoning since DMs need to think hard on how the problem at hand
unfolds when eliciting both their probabilistic and preferential beliefs. Therefore, a DM’s
model can often be used to answer various causal questions [Smith, 2010].

We now formally define the concept of intervention as introduced in Pearl [2000].

Definition 2.3.49. A Perlean intervention on YA, A ⊂ [n], consists of fixing these
variables to a (known) value yA. The resulting density is written f (y | (YA = yA)).

As noted in Section 2.3.2.2, there are several BNs entertaining the same density factori-
sation and therefore leading to the same kind of inferences. Causal reasoning cannot
thus be straightforwardly followed in generic BNs. We define here a particular class of
BNs that are causal in the Perlean sense.

Definition 2.3.50. A BN G is a Causal Bayesian Network (CBN if, for any Perlean
intervention on YA, A ⊂ [n], it holds that

f (y | θ, (YA = yA)) =
∏

i∈[n]\A
f (yi | θi,yΠi) .

Example 2.3.51. Consider the CBN with DAG in Figure 2.1. Suppose we intervene
on this DAG and set Y2 = y2. The resulting factorisation is equal to

f (y1, y2, y3, y4 | θ, do(Y2 = y2)) = f(y1 | θ1)f(y3 | y1, y2,θ3)f(y4 | y1,θ4).
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Figure 2.15: Causal version of the Bayesian Network in Figure 2.1 under the inter-
vention Y2 = y2.

Such intervention can be depicted graphically by deleting every edge into Y2, in this
case simply (Y1, Y2), and changing the label of the vertex associated to the intervened
variable to Y2 = y2. Such DAG is reported in Figure 2.15.

Definition 2.3.52. For an intervention (YA = yA) over the variables of a CBN G,
V (G) = {Yi : i ∈ [n]}, we call manipulated DAG G′ the network with edge set E(G′) =
E(G) \ {(Yi, Yj) ∈ E(G) : j ∈ A} and V (G′) = {Yi : i ∈ {[n] \A}} ∪ {Yi = yi : i ∈ A}.

If a BN is believed to be causal, then experimental evidence can be used to update the
parameter densities as formalised below.

Proposition 2.3.53. Suppose global independence holds and assume the experimental
sample x from the same population as Y is ancestral with respect to the manipulated
DAG for the intervention do(YA = yA). Let I be the set of indices of both the vertices
whose children are not sampled and the leaves of the DAG. Then, for a CBN the posterior
factorises as

π(θ | x) =
∏
i∈I

∏
j∈Ai
j 6∈A

π(θj | x)
∏

k 6∈{Ai∪A}
π(θk).

The concept of causality for BNs has been extended in Daneshkhah and Smith [2004]
to take into account manipulations of the parameter vector, usually called randomised
interventitions [see e.g. Daneshkhah and Smith, 2004, Lauritzen, 2001]. These consist
of fixing a random parameter of the density of a random variable to take a particular
known value. Daneshkhah and Smith [2004] defined the concept of an hypercausal BN,
which is one where certain randomised interventions respect the topology of the DAG.
Most importantly they showed that local and global independence holds iff the BN is
hypercausal and therefore also in the case the model is a CBN. Thus the validity of the
causal assumption can be checked through reasoning about the faithfulness of global
and local independence and vice versa. In Chapter 3 below we define a new class of
randomised interventions related to committing to a countermeasure policy. We are
able to show that Perlean interventions in CBNs can be seen as a special case of our
methodology.

We have focused here on causality over graphical directed structures, since these natu-
rally provide a framework for causal reasoning. In these models variables are ordered
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and there are no symmetric relationships. This is the reason why causal arguments
in MN models are much more difficult to develop [see e.g. Lauritzen and Richardson,
2002]. Although much of the literature on statistical causality centred on the BN model
class, the causal semantic has been extended to a variety of frameworks, e.g. CEGs
[Thwaites, 2013, Thwaites et al., 2010], CGs [Lauritzen and Richardson, 2002], DBNs
[Eichler and Didelez, 2007], IDs [Dawid, 2002], MDMs [Queen and Albers, 2009] and
others [Aalen et al., 2012, Dawid and Didelez, 2010, Smith and Figueroa, 2007]. We
point out that Dawid and Didelez [2010] developed causal arguments in the framework
of dynamic treatment strategies [Murphy, 2003]. These are dynamic models in medical
contexts where the objective is to identify the causal effect of a particular treatment. The
computation of these effects is based on backward inductive arguments, which mirror
the recursions we develop in Chapter 4 for IDSSs.

2.3.5 Emulators

Although probabilistic reasoning is now widespread in many areas of science, deter-
ministic modelling is still often performed in practice as noted in Chapter 1. Such
deterministic models usually consist of huge simulators using approximate methods to
numerically solve big systems of differential equations describing some natural process.
This is often the case in climate change modelling for example [Rougier and Crucifix,
2014].

Even if we believed these simulator models were true - which would be heroic - for coher-
ent Bayesian analyses to use these, there is the need to define a probability distribution
over the corresponding space of possibilities. This is because unmodelled uncertainty
appears at various stages of the deterministic computations of simulators, as extensively
discussed in Kennedy and O’Hagan [2000]. Probability distributions are then usually
achieved by building an emulator over their outputs. The literature on emulators is now
very vast [Kennedy and O’Hagan, 2001, Kennedy et al., 2006, O’Hagan, 2006, Santner
et al., 2003] and for the purpose of this thesis we focus here only on Bayesian methods.
Within the Bayesian literature a variety of methodologies have been developed to ac-
count for both large-dimensional and dynamic outputs [Conti et al., 2009, Craig et al.,
2001, Goldstein and Rougier, 2006, Liu and West, 2009, Rougier, 2008, Williamson and
Goldstein, 2011].

2.3.5.1 Modelling of Computer Outputs. A simulator is a function g(·) that
maps inputs z ∈ Z, for some arbitrary space Z, into an output y = g(z). In its vanilla
form the output y is univariate and constant through time. Often in practice only a
small set of training runs at inputs z1, . . . ,zN of the simulator are available, whose
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outputs y1 = g(z1), . . . , yN = g(zN ) are observed and treated as data. Only a small
number of such outputs can be observed since simulators are usually slow and each single
evaluation can take weeks if not months. An emulator is then an approximation ĝ(·) of
g(·) such than at an input point zi, ĝ(zi) = g(zi), whilst at other points it consists of
a distribution whose mean represents a plausible interpolation of the training runs and
its variance the uncertainty associated to such interpolation.

2.3.5.2 Gaussian Process Modelling. The most common modelling technique is
to assume that g(·) behaves as a Gaussian Process (GP). Formally, g(·) has a GP dis-
tribution if, for every N ∈ Z≥1, the joint distribution of g(z1), . . . , g(zN ) is multivariate
Normal for all z1, . . . ,zN ∈ Z. The distribution of the GP is therefore characterised
by its mean m(z) = E(g(z)) and its covariance function c(z, z′) = C(g(z), g(z′)), for
z, z′ ∈ Z. In general, m(·) may be any function, but c(·, ·) is non negative definite for
every z1, . . . ,zN ∈ Z and any N ∈ Z≥1. The mean and covariance functions are usually
modelled hierarchically as g(z) = m(z)+e(z) = h(z)Tβ+e(z), where h(z) = (hi(z))T

i∈[p]

is a vector of p known functions, β = (βi)T
i∈[p] is a vector of p unknown coefficients and

e(z) is a mean-zero GP with covariance c(·, ·). The vector h often simply consists of sim-
ple monomial functions of z. The covariance is usually defined as c(z, z′) = ψr(z − z′),
where r(·) is a correlation function such that r(0) = 1, z, z′ ∈ Z, and ψ ∈ R>0. This
choice implies a stationary process since the correlation only depends on the distance
between two points. A variety of correlation functions have been defined in the liter-
ature and these are often used in geostatistical modelling [see e.g. Diggle and Ribeiro,
2007]. The model definition is then completed by eliciting a prior distribution over the
parameters β and ψ. Often a weak improper prior is given to such parameters, but
conjugate analysis can be performed by choosing appropriate prior distributions just as
in the Normal linear model case [see e.g. Haylock and O’Hagan, 1996].

Once an emulator is built, using for example the GP structure we exemplified here,
each evaluation of the simulator can be used to update the probability distribution of
the emulator in a Bayesian fashion. Furthermore, additional uncertainty measures can
be included in the modelling. For example, calling y′i the true value of the system the
simulator is modelling, given observed inputs zi, one could set y′i = g(zi) + v, where v
is some error following for example a Gaussian distribution [see Kennedy and O’Hagan,
2000, for more comments on these modelling techniques].
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2.4 Utility Models

The other main ingredient of the SEU model is the utility function u(r, d). In this
section we provide a broad overview of utility theory with a particular focus to the
multiattribute case, i.e. when R is large dimensional. Let R = (Ri)T

i∈[m] and r and ri

be instantiations of R and Ri taking values in R and Ri respectively. Note that in the
notation of Section 2.2, each Ri can correspond to random quantities, decisions, or a
combination of the two.

Here we first introduce independence concepts for preferences mirroring those for prob-
abilistic reasoning. We then show how particular sets of independence assumptions can
lead to classes of utility factorisations that, just as in the probabilistic case, can highly
reduce the burden of utility elicitation. We then consider fairly recent utility factori-
sations that arise from underlying graphical models depicting preferential indifferences.
We conclude the section with a review of utility theory for single attributes which, under
the assumption of a particular utility factorisation, comes often into play in multivariate
settings.

Before that, we briefly summarise important aspects of utility theory that we do not
deal with in this thesis since these are not central for our results. Firstly, we do not
discuss value functions, although these are widely used in practice [Belton and Stewart,
2002, Keeney and Raiffa, 1976]. There are two main reasons for this: one, the coherence
and the rationale of the Bayesian formalism is retained only using utility functions; two,
value functions, differently from utilities, are not able to represent attitudes towards
risk.

Secondly, we assume in this thesis that the vector R includes a complete and non-
redundant collection of attributes so that this covers all the important aspects of the
problem and each factor is not double counted. In addition each Ri has to be opera-
tional so that it can be meaningfully used in the analysis and the DM can provide true
preferential assessments about it. More broadly, we assume that the vector R includes
all the relevant factors of the system under study and the DM can uniquely provide pref-
erential assessments over its elements. In practice to identify such a vector of attributes
an objective tree [Keeney and Raiffa, 1976] is built, which breaks down each attribute
into sub-attributes until the leaves of the tree consist of operational attributes only. An
example of the objective tree elicited during the Chernobyl project is presented in Fig-
ure 2.16. The root of this tree is the main factor related to a nuclear emergency: how
the accident affects humans’ living condition. This is then split in two sub-attributes:
one concerning the effects of the accident, the second the use of resources. Effects is
again split in two sub-attributes and the process continues in this fashion until a vertex
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Humans’ living

Effects

Health

Radiation

Hereditary Number of cancers

Stress

Acceptability

Affected Regions Rest of URSS

Resources

Figure 2.16: Objective tree elicited at the end of the Chernobyl project from Pa-
pamichail and French [2013]. The vertices in red of the tree are leaves, whilst the blue

ones are positions.

represents an operational attribute. Each leaf of this tree would then correspond in our
notation to an element Ri of R.

Finally, we do not discuss techniques to assess and elicit utility functions, either their
algebraic form or their features [see e.g. Clemen, 1996, Keeney, 1992, Keeney and Raiffa,
1976, Von Winterfeldt and Edwards, 1986]. These are however fundamental in any
formal decision analysis to faithfully represent the preferences of DMs.

2.4.1 Independence Concepts

As the dimension of R might be arbitrarily large, a variety of independence concepts
have been introduced in the literature to both simplify the utility elicitation and describe
various sets of indifferences. We introduce a few of these following Keeney and Raiffa
[1976].

Definition 2.4.1. An attribute RA is said to be Utility Independent (UI) of RB,
for a partition A, B of [m],6 if the utility for RA does not change when the attributes
in RB are varied.

Proposition 2.4.2. Under the conditions of Definition 2.4.1, if RA is UI of RB then
u(r) = a(rB) + b(rB)u(rA), where a(·) and b(·) > 0 depend on rB and not on rA.

In order to understand the meaning of this independence, consider the following example.
If the DM believes that the prevalence of tumours is UI of the amount of contamination,
then the utility function describing the prevalence of tumours does not depend on the
level of contamination of the area. For example, the utility of having a low number of
cancer cases would be the same both when the area is highly contaminated and when
there is no radiation at all. Note that utility independence is not necessarily symmetric:

6More generally, a partition B1, . . . , Bn of a set [m] is such that ∪i∈[n]Bi = [m] and ∩i∈[n]Bi = ∅.
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if the prevalence of tumours is UI of the level of contamination then it does not follow
that the converse is true.

We now consider two particular sets of utility independence statements.

Definition 2.4.3. We say that R has singly UI attributes if Ri UI R[m]\{i}, for every
i ∈ [m].

Definition 2.4.4. We say that R has mutually UI attributes if, for every A ⊆ [m], RA

UI R[m]\A.

We now consider a generalisation of utility independence [see e.g. Abbas, 2010].

Definition 2.4.5. An attribute RA is said to be Conditional Utility Independent
(CUI) of RB given RC , for a partition A, B, C of [m], if the utility of RA does not
change when the attributes in RB are varied, for each instantiation of RC .

Proposition 2.4.6. Under the conditions of Definition 2.4.5, if RA is CUI of RB given
RC then

u(r) = a(rB, rC) + b(rB, rC)h(rA, rC) (2.4.1)

for some a, h and b > 0, functions of their arguments only.

In order to give an explicit form to the function h of equation (2.4.1) in terms of utilities,
we introduce a generalisation of the utility function of Definition 2.2.1, which more easily
can represent CUI statements. Let r∗A = (r∗i )T

i∈A and r0
A = (r0

i )T
i∈A, A ⊆ [n], where r∗i

and r0
i are respectively the best and the worst outcome of attribute Ri.

Definition 2.4.7. The normalised conditional utility function for RA given R[m]\A is
defined as

u(rA | r[m]\A) =
u(rA, r[m]\A)− u(r0

A, r[m]\A)
u(r∗A, r[m]\A)− u(r0

A, r[m]\A)
.

We also define the normalised conditional disutility function as

ǔ(rA | r[m]\A) = 1− u(rA | r[m]\A)

From e.g. Abbas [2010] we have the following.

Proposition 2.4.8. Under the conditions of Definition 2.4.5, if RA CUI RB given RC

then
u(rA | rB, rC) = u(rA | r0

B, rC) = u(rA | r∗B, rC).

Furthermore, the terms in equation (2.4.1) can be written as a(rB, rC) = u(r0
A, rB, rC),

b(rB, rC) = u(r∗A, rB, rC)− u(r0
A, rB, rC) and h(rB, rC) = u(rC | r0

B, rC).
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We now introduce a different class of independence concepts.

Definition 2.4.9. Let B1, . . . , Bk be a partition of [m]. Attributes RB1 , . . . ,RBk
are

said to be additive independent if the preference comparison of any two lotteries, defined
as probability distributions over×i∈[k] RBi, depends only on their marginal probability
distributions.

Additive independence can be generalised to the case where the indices of the attributes
do not form a partition of [m].

Definition 2.4.10. Let B1, . . . , Bk be such that ∪i∈[k]Bi = [m]. Attributes RB1 , . . . ,RBk

are said to be Generalized Additive Independent (GAI) if the preference compar-
ison of any two lotteries depends only on the marginal probability distributions over

×i∈[k] RBi.

2.4.2 Utility Factorisations

The sets of independences introduced in the previous section give rise to specific factori-
sations of the overall utility function. Suppose each function uA(rA), a marginal utility
function over RA only, is such that ui(r0

A) = 0 and ui(r∗A) = 1, A ⊆ [m]. The following
results, from e.g. Keeney and Raiffa [1976], hold.

Proposition 2.4.11. If a utility function u(r) has m singly UI attributes, then it must
take the form

u(r) =
∑

A∈P0([m])
kA
∏
i∈A

ui(ri), (2.4.2)

where P0 denotes the power set without the empty set and kA ∈ [0, 1] is a criterion weight
[Keeney and Raiffa, 1976] such that

∑
A⊆[m] kA = 1.

Definition 2.4.12. Utility functions entertaining the factorisation in equation (2.4.2)
are called multilinear.

The criterion weights of equation (2.4.2) can be evaluated by comparing the utility of
terms u(r∗A, r0

[m]\A). Their actual form is not fundamental for this thesis and can be
found in Keeney and Raiffa [1976].

Proposition 2.4.13. If a utility function u(r) has m mutually UI attributes, then it
must take the form

u(r) =
∑

A∈P0([m])
hnA−1 ∏

i∈A
kiui(ri), (2.4.3)
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where nA is the number of elements in A, ki = u(r∗i , r0
[n]\{i}) and h is the unique solution

not smaller than minus one to

1 + h =
∏
i∈[m]

(1 + hki). (2.4.4)

Definition 2.4.14. Utility functions entertaining the factorisation in equations (2.4.3)
and (2.4.4) are called multiplicative.

Example 2.4.15. Consider three attributes R1, R2 and R3. A multilinear factorisation
over these attributes can be written as

u = k1u1 + k2u2 + k3u3 + k12u1u2 + k13u1u3 + k23u2u3 + k123u1u2u3,

whilst the multiplicative one has the form

u = k1u1 +k2u2 +k3u3 +hk1k2u1u2 +hk1k3u1u3 +hk2k3u2u3 +h2k1h2k3u1u2u3, (2.4.5)

where for ease of notation we left the arguments of these functions implicit.

We can note that the multiplicative factorisation is a special case of the multilinear one.
Importantly, in the multilinear case there are 2m− 2 criterion weights to elicit, whilst in
the multiplicative one these are only m. Therefore the elicitation task is much simpler
in the multiplicative case.

Proposition 2.4.16. If a utility function u(r) has m additive independent attributes
then it must take the form

u(r) =
∑
i∈[m]

kiui(ri), (2.4.6)

where
∑
i∈[m] ki = 1.

Definition 2.4.17. Utility functions entertaining the factorisation in equation (2.4.6)
are called additive.

Additive utility functions can be considered as special cases of multiplicative utility
functions, and therefore also of multilinear ones, by noting equation (2.4.6) coincides
with equation (2.4.3) in the case the weights of Proposition 2.4.13 sum to unity.

Example 2.4.18. An additive factorisation over three attributes R1, R2 and R3 can be
written as

u(r1, r2, r3) = k1u1(r1) + k2u2(r2) + k3u3(r3)
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Proposition 2.4.19. Suppose RB1 , . . . ,RBk
are GAI, where B1, . . . , Bk are such that

∪i∈[k]Bi = [m], then
u(r) =

∑
i∈[k]

ui(rBi). (2.4.7)

Example 2.4.20. Consider again three attributes R1, R2 and R3 and assume {R1, R2}
and {R2, R3} are GAI. Then

u(r1, r2, r3) = u12(r1, r2) + u23(r2, r3). (2.4.8)

Note however that the functions u12 and u23 are not uniquely defined. Braziunas and
Boutilier [2005] and Fishburn [1967] showed that in this example the utility function in
general decomposes as

u(r1, r2, r3) = u(r1, r2, r
0
3) + u(r0

1, r2, r3) + u(r0
1, r2, r

0
3). (2.4.9)

Therefore the third term on the right hand side (rhs) of equation (2.4.9) can be associated
to either of the first two terms of the rhs of equation (2.4.8). Fishburn [1967] defined
the so called canonical decomposition which uniquely identifies the subutility functions.

2.4.3 Graphical Utility Models

The most general case of the previous section still assumes that all the attributes are
utility independent of their complement. We note here that there are situations where
this assumption is not tenable and at least one attribute is not utility independent of its
complement. Such a situation is usually referred to as partial utility independence. Abbas
[2010] derived a general expansion theorem for multiattribute utility functions which
decomposes the overall function into a linear combination of products of conditional
utility functions of Definition 2.4.7. The resulting expression can then be simplified
using CUI statements similarly to conditional independence in probabilistic reasoning.
The underlying CUI structure can be represented by a network, exhibiting the same
expressive power of network representations of probabilistic conditional independences.

For the purpose of this thesis we mostly focus on the work of Abbas [2010], but we
note here that other authors have proposed solutions to factorise multiattribute utility
functions in the partial utility independence case. Farquhar [1975] presented a decompo-
sition theorem for utility independence structures called fractional hypercubes; Abbas
and Howard [2005] introduced a class of utility functions called attribute dominance
utility, where utility is equal to zero whenever any attribute is at its worst outcome,
and deduced expansion theorems for such a class; Bell [1979] introduced multiattribute
factorisations using interpolation techniques.
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We also note that a variety of graphical representations of different sets of preferential
independences have been defined. Again in this thesis we mostly focus on Abbas [2010]
which introduced bidirectional utility diagrams to represent sets of CUI statements.
These diagrams are a generalisation of the utility diagrams of Abbas and Howard [2005],
which only describe attribute dominance utilities. In the following chapters we restrict
our attention to a particular subclass of bidirectional utility diagrams, that can also be
thought of as CUI networks [Engel and Wellman, 2008]. Graphical models based on
additive independences also exist [Bacchus and Grove, 1995, Braziunas and Boutilier,
2005]. Lastly, we note that La Mura and Shoham [1999] introduced expected utility
networks that simultaneously represent probabilistic and preferential independences.

We first present the expansion theorem of Abbas [2010]. Let R0∗
A be the set of all

possible instantiations of RA such that, for i ∈ A, Ri is either at its maximum or at
its minimum value, A ⊂ [m]. Suppose A is totally ordered and, for i ∈ A, let Bi be
the subset of A including the successors of i in A according to this order. Further let
Vi = A \ {Bi ∪ {i}}.

Proposition 2.4.21. For any A ⊆ [m], u(r) can be written as

u(r) =
∑

r0∗
A ∈R0∗

A

u(r0∗
A , r[m]\A)

∏
i∈A

g(ri | r0∗
Bi
, rVi), (2.4.10)

where

g(ri | r0∗
Bi
, rVi) =

 u(ri | r0∗
Bi
, rVi), if ri = r∗i in u(r0∗

A , r[m]\A),
ǔ(ri | r0∗

Bi
, rVi), if ri = r0

i in u(r0∗
A , r[m]\A).

Example 2.4.22. Consider three attributes R1, R2 and R3. A generic decomposition
for u(r1, r2, r3) assuming 3 � 2 � 1, where � is the order relation, can be written as

u(r1, r2, r3) = u(r∗1, r∗2, r∗3)u(r3 | r2, r1)u(r2 | r∗3, r1)u(r1 | r∗3, r∗2) +

u(r0
1, r
∗
2, r
∗
3)u(r3 | r2, r1)u(r2 | r∗3, r1)ǔ(r1 | r∗3, r∗2) +

u(r∗1, r0
2, r
∗
3)u(r3 | r2, r1)ǔ(r2 | r∗3, r1)u(r1 | r∗3, r0

2) +

u(r∗1, r∗2, r0
3)ǔ(r3 | r2, r1)u(r2 | r0

3, r1)u(r1 | r0
3, r
∗
2) +

u(r0
1, r

0
2, r
∗
3)u(r3 | r2, r1)ǔ(r2 | r∗3, r1)ǔ(r1 | r∗3, r0

2) +

u(r0
1, r
∗
2, r

0
3)ǔ(r3 | r2, r1)u(r2 | r0

3, r1)ǔ(r1 | r0
3, r
∗
2) +

u(r∗1, r0
2, r

0
3)ǔ(r3 | r2, r1)ǔ(r2 | r0

3, r1)u(r1 | r0
3, r

0
2). (2.4.11)

The first term in each monomial can be written as a linear combination of criterion
weights, whilst all the other conditional utilities have a single argument.
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R1 R2 R3

Figure 2.17: Example of a bidirectional utility diagram over three attributes.

The utility decomposition in equation (2.4.10) can be simplified using various sets of
CUIs. These can be represented by the so called bidirectional utility diagrams. Here we
slightly change the definition of Abbas [2010] and represent these as CGs.

Definition 2.4.23. A bidirectional utility diagram is a chain graph G with vertex set
{R1, . . . , Rm} and whose edges represent the possibility of utility dependence as follows:

• if (Ri, Rj), (Rj , Ri) 6∈ E(G), then Ri is CUI of Rj given R[m]\{i,j} and Rj is CUI
of Ri given R[m]\{i,j};

• if (Ri, Rj) ∈ E(G) but (Rj , Ri) 6∈ E(G) then Ri is CUI of Rj given R[m]\{i,j};

• if (Ri, Rj), (Rj , Ri) ∈ E(G) then no utility independence is implied.

Example 2.4.24. In Figure 2.17 we present an example of a bidirectional diagram.
This diagram includes only a directed edge and therefore represents the closest situation
to a multilinear factorisation, corresponding to a diagram with no edges. This diagram
asserts that R1 is UI of {R2, R3} and vice versa, plus that R3 is CUI of R2 given R1.
Therefore, using the CUI statements associated to the diagram in Figure 2.17, equation
(2.4.11) can be rewritten as

u = u(r∗1, r∗2, r∗3)u(r3 | r∗2)u(r2 | r∗3)u(r1) + u(r0
1, r
∗
2, r
∗
3)u(r3 | r∗2)u(r2 | r∗3)ǔ(r1) +

u(r∗1, r0
2, r
∗
3)u(r3 | r0

2)ǔ(r2 | r∗3)u(r1) + u(r∗1, r∗2, r0
3)ǔ(r3 | r0

2)u(r2 | r0
3)u(r1) +

u(r0
1, r

0
2, r
∗
3)u(r3 | r0

2)ǔ(r2 | r∗3)ǔ(r1) + u(r0
1, r
∗
2, r

0
3)ǔ(r3 | r∗2)u(r2 | r0

3)ǔ(r1) +

u(r∗1, r0
2, r

0
3)ǔ(r3 | r0

2)ǔ(r2 | r0
3)u(r1).

Abbas [2010] identifies classes of bidirectional utility diagrams which give rise to optimal
expansions of the multiattribute utility function, i.e. those where the conditional utility
functions include the lowest number of arguments.

For the purpose of this thesis we consider only a subclass of bidirectional utility diagrams.
This was defined in Leonelli and Smith [2015].

Definition 2.4.25. We say that a bidirectional utility diagram is a directional utility
diagram if its graph is a DAG.

Note that the diagram in Figure 2.17 is unconventional in the sense that an attribute
is parent of another one having a lower index. We motivate this choice in Chapter 4,
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where such diagrams proves to be very useful. Directional utility diagrams are extremely
powerful in the multi-expert domains we address in later chapters, since the utility
function associated to such diagrams can be written in terms of criterion weights and
univariate utility functions. This is formalised in the following lemma.

Lemma 2.4.26. For a directional utility diagram with vertex set {Ri : i ∈ [m]} there
exists an expansion order such that equation (2.4.10) is a linear combination of terms
involving only criterion weights and conditional utility/disutility function having as ar-
gument a single attribute.

Proof. This result follows by observing that the terms u(r0∗
A , r[m]\A) in equation (2.4.10)

coincide with u(r0∗
[m]) since the expansion can be performed over all the attributes. These

terms are functions of criterion weights. Furthermore the conditional independence
structure underlying a directed utility diagram is such that there is an expansion order
where Ri UI RVi | R[m]\{Vi∪i}. Thus g(ri | r0∗

Bi
, rVi) in equation (2.4.10) is equal to

g(ri | r0∗
Bi

).

2.4.4 Univariate Utility Theory

In the previous sections we have shown how multiattribute utility problems can be
decomposed into univariate ones when various sets of independences are believed to
hold. We now discuss some of the characteristics of univariate utility functions and
provide various examples.

First, recall that utility functions are unique up to affine transformations, meaning that
they imply the same preference ranking. Two such functions are said to be strategically
equivalent. In addition, Keeney and Raiffa [1976] showed that if two utility functions
are strategically equivalent, then one must be an affine transformation of the other.

We now introduce a variety of utility functions widely used in practice.

Example 2.4.27. For the purpose of this example, we make explicit the dependence
on the decision d. Choices for ui(ri,d) are

• the linear utility function, ui(ri,d) = a(d) + b(d)ri, for b(d) > 0;

• the quadratic utility, ui(d, ri) = 1−(ρi(d)ri)2, whose parameter is specified through
the ideal scenario ρi(d);

• the polynomial utility of degree l, ui(d, ri) =
∑
j∈[l] ρij(d)rji , where both the coef-

ficients ρi,j(d) and the domain of the rewards need to entertain some constraints
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[see Keeney and Raiffa, 1976, Müller and Machina, 1987, for a discussion of these,
which we omit here since are not relevant for our developments];7

• the exponential utility function, ui(ri,d) = 1+exp {−ρi(d)ri}, where the parameter
ρi(d) > 0, reflects the degree of risk aversion.

Many of the characteristics of a univariate utility function, as for example whether it
is monotonic and convex or not, describe the preferences of the DM and her attitude
towards risk. See for more details on this Keeney and Raiffa [1976].

2.5 Graphical Decision Models

In the previous sections we assumed the existence of a generic decision space D repre-
senting the available choices to a DM. However, in practice, DMs have to commit to a
sequence of decisions, where some of the consequences of committing to a certain action
are observed before having to choose subsequent policies. Such a sequential structure
can be depicted through graphical representations of various types. Here we focus on
the Influence Diagram (ID) model, which can be thought of as an augmented version
of a BN including also decision and utility vertices. These are introduced in Section
2.5.1. We note that, although widely used in practice, IDs are able to represent decision
problems entertaining fierce symmetric conditions. In Section 2.5.2 we provide a brief
overview of the available models for the so called asymmetric decision problems.

For the purpose of this section, we slightly change our notation, which turns out to be
very useful in concisely represent many of the features related to IDs. Furthermore, as
shown in Section 5.6.1, this enables a straightforward implementation of the study of
these models in a computer algebra system. This is a new representation of IDs that we
introduced in Leonelli et al. [2015a]. Let [n] be partitioned in V and D, where V is the
index set of the random (or non-controlled) variables, whilst D is the index set of the
decisions (or controlled variables).

Example 2.5.1. Let n = 6 and assume D = {1, 4} and V = {2, 3, 5, 6}. Then Y1 and
Y4 are decisions, whilst Y2, Y3, Y5 and Y6 are random variables.

2.5.1 Influence Diagrams

As noted above, only decision problems enjoying strong symmetry conditions can be rep-
resented as IDs [Howard and Matheson, 1983, 2005b, Jensen and Nielsen, 2009, Shachter,

7Note that the polynomial utility has no monomial of degree zero. This is because many of the results
of Chapter 5 are more easily interpretable in this case. Recall that adding such a monomial does not
change the analysis as the two utilities are strategically equivalent.
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1986, Shachter and Kenley, 1989, Smith, 2010]. We define here, following [Smith, 2010,
Smith and Thwaites, 2008], the class of problems that entertains such a representation,
that we call uniform.

Definition 2.5.2. A uniform decision problem is such that:

• a variable Yi, i ∈ D, is controlled before controlling Yj, j ∈ D, if i < j, and is
remembered when making decisions with a higher index;8

• the space Y [n] is the product of the individual spaces, i.e. Y [n] =×i∈[n] Yi;

• if a random variable Yi, i ∈ V, is observed before a variable Yj, then i < j and its
distribution can depend on YD only through YD∩[i−1].

The condition in the first bullet is usually referred to as no-forgetting. This bullet further
implies that decisions are totally ordered. Furthermore decisions and random variables
cannot be constrained with each other in uniform decision problems, as specified by the
second bullet. The third bullet corresponds to the causal consistency lemma of Cowell
et al. [1999] and guarantees that decisions cannot influence variables that have been
already observed.

As briefly mentioned, the vertex set of an ID consists of random variables, decisions
and utilities. We focus now on the latter type of nodes. The ID literature usually
assumes that there is an additive factorisation between the utilities associated to different
vertices. We refer to such IDs as additive IDs. In Leonelli et al. [2015a] we defined the
Multiplicative Influence Diagram (MID) which considers the much larger class of
multiplicative utility factorisations. Let U = {ui : i ∈ [m]} and ui, i ∈ [m], maps a
subspace YPi of Y [n] into [0, 1], with Pi ⊆ [n].

Definition 2.5.3. An MID G consists of

• a DAG with vertex set V (G) = {Yi, uj : i ∈ [n], j ∈ [m]} and edge set E(G)
including three types of edges defined by the following rules:

– for i ∈ [m], ui has no children. Its parent set is {Yj : j ∈ Pi} and an index
i ∈ [n] can appear in a set Pj only, j ∈ [m], i.e. an element of {Yi : i ∈ [n]}
is parent of at most one element of U. For ui and uj, i, j ∈ [m], i > j if there
is a k ∈ Pi such that for every l ∈ Pj, k > l: i.e. a utility node ui has higher
index than uj if one parent of ui has higher index than all parents of uj;

– for i ∈ D, the parent set of Yi, {Yj : j ∈ Πi}, for Πi ⊂ [n], consists of the
random variables and the decisions that are known when Yi is controlled;

8With the term controlled we mean that a decision variable is implemented.
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– for i ∈ V, the parent set of Yi, {Yj : j ∈ Πi}, for Πi ⊂ [n], is such that
Yi ⊥⊥ Y i

[n] | YΠi ,θ;

• for i ∈ V, a density function fi(yi | yΠi ,θi);

• a multiplicative utility factorisation over U.

Therefore, in an MID there are three types of vertices and three types of edges. The
vertices are either random variables, decisions or utilities. Random variables are framed
in circles, decisions in squares, whilst utilities have no framing in the DAG G of an
MID. An edge into a vertex associated to a random variable asserts that the density
of that random variable is conditional on the variable associated to the parent vertex.
This edge therefore represents probabilistic dependence. Edges into decision vertices
are called information edges. These imply that the variables in the parent vertex are
known when making that decision. Edges into utility vertices simply represent functional
relationships, meaning that the utility is a function of the parent variables. Smith [2010]
defined the reduced ID, where some of the information edges are not included, thus
rendering the overall graphical representation clearer. Specifically, in a reduced ID no
edge (Yk, Yi) is included if (Yk, Yj) ∈ E(G), k < j < i, j, i ∈ D.

IDs are extremely powerful graphical representations of the qualitative structure under-
lying the elements of decision problems. In particular, these are able to depict both
continuous and discrete domains. Note that although Pi, i ∈ [m], is effectively an index
parent set, we had to use a different notation than the one generically introduced for
graphs in Appendix B, because of the existence of both utility and non-utility nodes.

Definition 2.5.3 implies a total order over the vertex set of an MID. For i ∈ [m], let
ji be the highest index of Pi and J = {ji : i ∈ [m]}. The totally ordered sequence
associated to V (G) is called Decision Sequence (DS) of the MID G and indicated
as S := (Y1, . . . , Yj1 , u1, Yj1+1, . . . , Yjm , um). In contrast with other authors [e.g. Cowell
et al., 1999, Jensen and Nielsen, 2009], we do not introduce utility nodes only at the
end of the DS. This entails an efficient computation of the expected utility scores, since
optimal decisions can be shown to be functions of smaller sets of preceding variables.

Example 2.5.4. Figure 2.18 presents an MID with vertex set {Y1, . . . , Y6, u1, . . . , u3}
describing a gross simplification of the possible countermeasures after an accident at a
nuclear power plant. For this MID, n = 6, m = 3, D = {1, 4} and V = {2, 3, 5, 6}.
Therefore, there are two decisions Y1 and Y4: the first consisting of the possibility of
closing down the power plant, the second of evacuating the nearby population. Before
controlling Y4, the variables Y1, Y2 and Y3 are observed since Π4 = {1, 2, 3}. There are
four random nodes: Y2 and Y3 measure the amount of dispersion of the contaminant
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Figure 2.18: An influence diagram describing the available countermeasures after an
accident at a nuclear power plant.

in the atmosphere and to the ground respectively, Y5 estimates the human intake of
radiation and Y6 ranks the level of stress in the population. This DAG implies for
example that Y5 ⊥⊥ Y2 | Y3 for every y1 ∈ Y1 and y4 ∈ Y4. The variable Y5 has parent
set {Y3, Y4}, Π5 = {3, 4} and Π5∩V = {3}. We further assume all variables to be binary,
taking values in the spaces Yi = [1]0, i ∈ [6]. When Yi is associated to a decision node,
1 and 0 correspond to, respectively, proceed and not proceed. If Yi is associated to a
random node, then 1 and 0 correspond respectively to high and low. The MID definition
is completed by three utility nodes, u1, u2 and u3. For example the set P3 is equal to
{4, 6} and therefore Y4 and Y6 are the arguments of the utility function u3. Lastly,
the DS (Y1, Y2, Y3, u1, Y4, Y5, u2, Y6, u3) is the one associated to the MID in Figure 2.18,
where j1 = 3, j2 = 5, j3 = 6 and J = {3, 5, 6}.

The density associated to an MID enjoys a factorisation which mirrors the one of BNs.

Proposition 2.5.5. The probability density function associated to an MID can be writ-
ten as f(yV | θ) =

∏
i∈V f(yi | yΠi ,θi), where θT = (θi)i∈V.

Example 2.5.6. The density function associated to the MID in Figure 2.18 can be
written as

f(y | θ) = f(y2 | y1,θ2)f(y3 | y2, y1,θ3)f(y5 | y4, y3,θ5)f(y6 | y5, y4,θ6).

The utility factorisation associated to this MID coincides with the one in equation (2.4.5)

2.5.1.1 The Evaluation of Influence Diagrams. To evaluate an MID is to identify
a sequence of optimal decisions maximising the expected utility function. However, only
MIDs whose topology is such that, for any index j ∈ D, the only variables that are known
at the time the DM makes a decision Yj have an index lower than j, can be directly
evaluated using standard ‘extensive form’ calculations [Smith, 1989b]. This is because
the evaluation outputs optimal decisions as functions of observed quantities only and
therefore DMs can unambiguously commit to such an optimal course of action. Here we
define this class using the terminology of Smith [2010].

Definition 2.5.7. An MID G is in extensive form if i ∈ Πj, for all j ∈ D and i ∈ [j−1].
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We assume here for the sake of simplicity that the MID under study is in extensive form.
However, we note here that any MID in non extensive form can be transformed into one
that is: albeit sometimes with the loss of some efficiency. There are several rules, which
we do not introduce here, to manipulate the topology of an MID, as for example, edge
reversal and barren node removal [see e.g. Jensen and Nielsen, 2009, Shachter, 1986],
such that the resulting MID is in extensive form. Without restriction we also assume
that every vertex Yi of the MID, i ∈ [n], has at least one child. Random and controlled
vertices with no children could be simply deleted from the graph without changing the
outcome of the evaluation of the MID [see e.g. Jensen and Nielsen, 2009].

Example 2.5.8. The MID in Figure 2.18 is in extensive form since Π4 = {1, 2, 3}. If
either the edge (Y2, Y4) or (Y3, Y4) were deleted from this diagram, then the MID would
not be in extensive form any more. Furthermore note that the only vertices with no
children are u1, u2 and u3.

Several algorithms have now been defined to evaluate IDs. These can work directly
on the ID [Olmsted, 1984, Shachter, 1986], transform it into a decision tree [Canbolat
et al., 2007], or convert the diagram into some other graphical structure [Jensen et al.,
1994, Madsen and Jensen, 1999]. There were severe computational issues related to
the evaluation of IDs, but there are now several promising methodologies designed to
overcome these challenges, as noted in Bielza et al. [2011] and Gómez et al. [2007]. Many
different pieces of software are also now available to build and automatically evaluate
large IDs [Jensen and Nielsen, 2013]. The simplest way to evaluate an MID in extensive
form is through a backward inductive algorithm over the vertices of the DAG [see e.g.
Jensen and Nielsen, 2009]. Here we introduce a computationally efficient new version
of this algorithm, including at each step only the strictly necessary utility nodes. For
simplicity, we work with the predictive distribution f(y) =

∫
Θ f(y | θ)f(θ), but the

result can be straightforwardly generalised to take into account the parameter vector.
The identification of the optimal policy is based on the computation of the functions
ūi(yBi), i ∈ [n], we formally introduce in Proposition 2.5.10, where

Bi =

 ⋃
k∈[n]i−1∩V

Πk

⋃ ⋃
j∈[n]i−1∩J

Pj

 \ [n]i−1, (2.5.1)

is the index set of the variables that appear as arguments of ūi, where [n]i−1 = {i, . . . , n}.
It should be noted that Bi includes only indices smaller than i that are either in the
parent set of a random variable Yk, k > i, or in a set Pj such that uj succeeds Yi in the
DS of the MID.

Example 2.5.9. We compute here the sets B5 and B4 associated with the MID in Figure
2.18. The set B5 = {3, 4} since B5 = {Π6 ∪ Π5 ∪ P3 ∪ P2} \ {5, 6}, where Π6 = {4, 5},
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Π5 = {3, 4}, P3 = {4, 6} and P2 = {5}. Furthermore B4 = {3} since it can be noted
that B4 = B5 \ {4}.

Proposition 2.5.10. The optimal decision associated to an MID yields expected utility
ū1(yB1), where, for i ∈ [n], ūi(yBi) is defined as

ūi(yBi) =

 ūDi (yBi), if i ∈ D,
ūVi (yBi), if i ∈ V,

where, for i = n,

ūDn(yBn) = max
Yn

kmum(yPm), ūVn(yBn) =
∫
Yn

kmum(yPm)fn(yn | yΠn)dyn, (2.5.2)

and, for i ∈ [n− 1], if i ∈ J and supposing i ∈ Pl,

ūDi (yBi) = max
Yi

(
hklul(yPl

)ūi+1(yBi+1) + klul(yPl
) + ūi+1(yBi+1)

)
, (2.5.3)

ūVi (yBi) =
∫
Yi

(
hklul(yPl

)ūi+1(yBi+1) + klul(yPl
) + ūi+1(yBi+1)

)
fi(yi | yΠi)dyi, (2.5.4)

whilst, if i 6∈ J,

ūDi (yBi) = max
Yi

ūi+1(yBi+1), ūVi (yBi) =
∫
Yi

ūi+1(yBi+1)fi(yi | yΠi)dyn. (2.5.5)

The proof of this result is given in Appendix A.1.1. In Section 5.6.1 we symbolically
define MIDs and introduce a new symbolic evaluation algorithm.

2.5.2 Asymmetric Models

The ID framework is able to represent uniform decision problems only. However, real
decision problems often exhibit asymmetries of various kinds. In Jensen and Nielsen
[2009] asymmetries are categorised in three classes. If the possible outcomes or decision
options of a variable vary depending on the past, the asymmetry is called functional.
If the very occurrence of a variable depends on the past, the asymmetry is said to be
structural. Order asymmetries are present if {Yi : i ∈ D} is not totally ordered. We note
here that there are four types of functional asymmetries that can occur:

• chance → chance: the outcome of random variables restricts the outcomes of
other random variables;

• chance → decision: the outcome of random variables restricts the options of
controlled variables;
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• decision → chance: decisions taken restrict the possible outcomes of random
variables;

• decision → decision: decisions taken restrict the options of other controlled
variables.

Heuristically, for each of these asymmetries the observation of yA, A ⊂ [n], changes the
space YB associated to a vector YB, such that A ∩ B = ∅. This new space, Y ′B say, is
a subspace of YB.

The simplest solution to the evaluation of an asymmetric problem is by embedding it in
a symmetric one which can be represented as an ID. The above mentioned evaluation
algorithms can then be used to identify optimal solutions in the embedded version of
the problem. Clearly this methodology has several drawbacks. Most importantly it does
not graphically represent the relevant asymmetries and often considers a much larger
problem space than the original one. For this reason a variety of graphical models have
been introduced to represent a variety of asymmetric constraints [Bhattacharjya and
Shachter, 2012, Demirer and Shenoy, 2006, Jensen and Vomlelová, 2002, Jensen et al.,
2006, Nielsen and Jensen, 2003, Smith et al., 1993]. It is not the purpose of this thesis
to review these models and we briefly illustrate part of the semantic of the sequential
ID [Jensen et al., 2006] model in the following example.

Example 2.5.11. Consider the ID in Figure 2.18 and assume that the DM now believes
her decision problem is characterised by the following three asymmetries:

• whenever she decides to close the power source, then the population cannot be
evacuated from the area: Y1 = 1⇒ Y4 = 0;

• if either the deposition or the dispersion levels in the area are high, then the human
intake is high: Y2 = 1 ∨ Y3 = 1⇒ Y5 = 1;

• if the evacuation option is followed then both the human intake and the stress
levels in the population are high: Y4 = 1⇒ Y5 = 1 ∧ Y6 = 1.

Our graphical representation of these asymmetries is given in Figure 2.19, corresponding
to a sequential ID [Jensen et al., 2006]. Asymmetries are represented as labels on
additional dashed arcs. If the asymmetry is composite, meaning that it involves more
than two variables, then vertices can be grouped through a dashed ellipse and dashed
arcs can either start or finish by the side of these ellipses. As exemplified by the diagram
in Figure 2.19, the graphical representation of asymmetric decision problems, although
providing a framework to quickly identify optimal policies, often lose the intuitiveness
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Y1

Y3

Y2

Y4

Y6

Y5U1

U3

U2

Y1 = 4|Y4 = 0

Y2 = 1, Y3 = 1|Y5 = 1

Y4 = 1|Y5 = 1, Y6 = 1

Figure 2.19: Representation of the asymmetric version of the multiplicative influence
diagram of Figure 2.18 as a sequential influence diagram.

and the clarity of representation of standard IDs. We discuss more extensively this issue
in Section 5.6.1.

Asymmetric decision problems can also be explicitly modelled as decision trees [see e.g.
Clemen, 1996, French et al., 2009], an augmented version of an event tree including
decision vertices and whose leaves are utilities. These suffer the same drawbacks of
staged and event trees. Recently Cowell et al. [2010] introduced the decision CEG
which can more compactly represent asymmetric decision problems.

2.6 Group Decision Making

The SEU model characterises rational decision making for single DMs. However, in
practice, most decisions in organisations and society are the responsibility of groups
rather than individuals: juries, cabinets and boards of directors are some examples. In
addition, even single DMs rarely commit to certain courses of actions without seeking
for the help of appropriate experts. How the suggestions of various experts have to be
reconciled is a very interesting question and a variety of solutions have been proposed.
Following French [2011], we identify two main contexts of group decision making:

• the group decision problem: a group of individuals is jointly responsible and
accountable for the decision;

• the expert problem: a group of experts are consulted by a single DM who is
responsible and accountable for the decision to be made.

French [2011] also identifies the textbook problem context which for the purpose of this
thesis is not discussed here. Note further that a combination of the two above scenario
can be considered in practice. There are two main categories of approaches for both
contexts: behavioural and mathematical. We review the former ones in Section 2.6.1.
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Mathematical approaches for the group decision problem are based on some algorithmic
rule which, given the preferences and beliefs of each individual DM, then outputs the
decision ranking of the group. We do not focus in this thesis on these methods and
we simply note here that there is vast literature about these [see e.g. Arrow, 1951,
French, 2011, French et al., 2009, Keeney, 1976, 2013, Keeney and Raiffa, 1976]. Most
of these methods, embedding some idea of democratic voting, are subject to paradoxes
and inconsistencies. We discuss mathematical approaches for the expert problem in
Section 2.6.2.

2.6.1 Behavioural Approaches

Decision conferences and facilitated workshops are the most common techniques of be-
havioural aggregation of DMs’ beliefs and preferences [Ackermann, 1996, Phillips, 1984,
Phillips and Phillips, 1993]. These are usually two days events with around fifteen par-
ticipants [although for example in the Chernobyl project we discussed in Chapter 1 the
number of participants was way larger, as noted in French et al., 2009]. In such meet-
ings, a facilitator, an individual skilled in the process of group discussion, encourages
debate among the DMs and keeps the group’s focus on the issue at hand. The facilitator
is usually not an expert of the problem to be examined and has no ownership of the
decision to be made. Each DM often has available interactive software to run her own
analyses and observe the results of others’ beliefs, which are also projected in the room.
This software uses decision models which turns out to be fundamental to foster discus-
sion and raise the main issues that need to be investigated by the group. The results
of sensitivity analyses are also shown to the DMs in order to build consensus and avoid
debates on irrelevant alternatives or parameters that do not affect the group’s course of
action.

As discussed in Chapter 1, these types of meetings were central to the decision elicitation
process within the Chernobyl Project. The discussions at those meetings are summarised
in French et al. [2009] and Smith [2010]. Ackermann [1996] reports more than 100 of
successful applications of such behavioural techniques.

A different method called Delphi protocol has been designed to reach consensus by the
remote and electronic compilation of a series of questionnaire, thus not requiring the
group to meet [Dalkey and Helmer, 1963, Linstone and Turoff, 1975]. Under this proto-
col, each individual anonymously responds to the questionnaire. The answers are then
sent to the other members for further comments and generations of possible courses of
actions. This sequence is then iteratively repeated until consensus is reached.
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2.6.2 The Expert Problem

The second context where groups are involved in the decision making process is the
expert problem. Here an individual DM needs to synthesise the beliefs of a group
of m experts into a unique probability distribution. Mathematical methods for the
aggregation of expert judgement can be broadly categorised into two main branches:
Bayesian and pooling operator methods. Before discussing these approaches, we remark
that it is not the scope of this thesis to explore the validity of each of these [see e.g.
Clemen and Winkler, 1999, French, 2011, and the references therein for an extensive
discussion]. O’Hagan et al. [2006] discussed protocols to be followed by each expert
to elicit his own probability distribution, whilst Merrick [2008] introduced methods to
identify the right mix of experts to obtain the best aggregated belief. Here we mostly
focus on pooling operators and we simply note that the Bayesian approach treats experts’
judgements as data, synthesised in some appropriate likelihood function, to update the
prior probability of the DM [see e.g. Albert et al., 2012, French, 1980, Mumpower and
Stewart, 1996, Wiper and French, 1995].

2.6.2.1 Pooling Operators. Given the individual probabilities of a group of m ex-
perts, f i(y), i ∈ [m], pooling operators consist of a function T p which pools together into
a unique probability distribution, fDM (y), the probability distributions of each member
of the group. For ease of notation we suppress the dependence on the parameter vector.

The simplest operator is the linear one [Stone, 1961], corresponding to a weighted aver-
age of the experts’ distributions:

fDM (y) = Tp(f1(y), . . . , fm(y)) =
∑
e∈[m]

wefe(y).

Bacharach [1975] introduced the logarithmic Operator (logOp) defined as

fDM (y) = Tp(f1(y), . . . , fm(y)) ∝
∏
e∈[m]

fe(y)we
.

One of the main issues concerning pooling operators is the identification of the weights we
to be given to each expert. The aggregation most commonly used in practice is through
a linear operator whose weights are calibrated according to the forecasting performance
of the experts on a calibration set of uncertain quantities. This method is usually called
classical approach to the combination of expert judgements [Cooke, 1991].

Sets of axioms characterising operators encoding rational behaviour have been defined
[see for a review Genest et al., 1986]. We argue here, following Faria and Smith [1997],
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that one very desirable property for a pooling operator is to be Externally Bayesian
(EB) [Madansky, 1964].

Definition 2.6.1. A pooling operator Tp is said to be EB if fDM (y) is the same when
the following two procedures are implemented:

• first apply Tp and then update fDM (y) using Bayes theorem;

• first update each expert’s distribution f i(y) via Bayes Theorem and then apply Tp.

Therefore for EB operators the order in which pooling and updating are performed is
irrelevant. This is a desirable property for a variety of reasons: first, experts do not need
to meet every time data is collected; second, experts cannot increase their influence on
the outcome by choosing whether to include their beliefs before or after the collection
of data; lastly, as we discuss below, operators exhibiting such a property are in general
able to retain the conditional independences underlying an agreed model. Importantly,
Genest [1984] characterised the logOp as the only operator being EB. Although EB
operators have useful properties in the domains we are addressing, we note that these
operators have been criticised in the literature [see e.g. Lindley, 1985].

2.6.2.2 The Multivariate Case. When experts have to elicit probabilities in large
multivariate settings, their performance might dramatically decrease because of the dif-
ficulty in assessing correlations [Clemen et al., 2000, Winkler and Clemen, 2004]. One
approach often used to mitigate such difficulties is to elicit probabilities over an agreed
qualitative graphical structure, as for example a BN [Burns and Clemen, 1993, Faria and
Smith, 1997, Farr et al., 2015, Renooij, 2001, Smith and Faria, 2000]. Smith [1996] exten-
sively argued that experts’ agreement can be more easily found in graphical frameworks
since the underlying conditional independence structure can be discussed in natural
language.

Pennock and Wellman [2005] proved that a pooled distribution obtained with a logOp
reflects any shared Markov independence by the group and for this reason, it can be
represented in a concise and natural manner with a BN as well. However, it was also
noted that no pooling operator can maintain all independences representable in a BN.
Having acknowledged this negative result, in Chapter 3 we develop a framework where
groups of experts qualitatively agree on a specific graphical model and then quanti-
tatively individually deliver probability judgements, preserving the group’s conditional
independence structure.

Here we focus on the work of Faria and Smith [1996] and Faria and Smith [1997] which
assumes the presence of an underlying decomposable CG agreed by all the experts.
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Their work, introducing a generalisation of the logOp, falls within the pooling operators
approach. Suppose the decomposable CG G has n chain components {Yi : i ∈ [n]} .

Definition 2.6.2. For a decomposable CG G, the conditional logOp, TP , is defined
by the components Tp

Πj

fDMj (yj | yΠj ) = Tp
Πj

(·) ∝
∏
i∈[m]

f ij(yj | yΠj )w
i
j(Πj),

where f ij is is the conditional density relative to Yj provided by the i-th expert and wij(Πj)
is a weight. The DM distribution is then defined as

fDM (y) = Tp =
∏
j∈[n]

Tp
Πj

=
∏
j∈[n]

fDMj (yj | yΠj ).

Although the conditional logOp is not EB, Faria and Smith [1997] showed that it respects
a weaker condition called Conditional External Bayesianity (CEB).

Definition 2.6.3. Given a CG G, CEB holds if the conditional densities f ij(yj | yΠj ),
i ∈ [m], j ∈ [n], are pooled with an EB operator.

We define here a class of likelihood functions that guarantees CEB when the pooling is
performed with a conditional logOp.

Definition 2.6.4. A likelihood l(x | y) for a sample xT = (xi)i∈[n] is in the class of
cutting likelihoods of a CG G with chain components {Yi : i ∈ [n]} if

l(x | y) = l1(x1 | y1)l2(x2|y2,yΠ2 ,x1) · · · ln(xn | yn,yΠn ,x
n−1). (2.6.1)

Faria and Smith [1997] then proved that the conditional logOp respects CEB when the
pooling/updating is performed according to a procedure we briefly review here. Let f̃g
be the joint density over G obtained by first pooling the individual posterior densities
on Yn | YΠn ,X, then using the derived density on X | Y n−1 to pool the individual
posteriors on Yn−1 | YΠn−1 ,X, and so on. Conversely, let f̄g the joint density over G ob-
tained by first pooling the individual prior densities on Yn | YΠn and forming the group’s
posterior density of Yn | YΠn ,X, then pooling the individual priors on Yn−1 | YΠn−1

and forming the posterior on Yn−1 | YΠn−1 ,X using the density of X | Y n−1, and so on.
We say that when these procedures are followed, the densities are backward sequentially
updated. It is apparent that an operator respecting CEB is such that f̃(y | x) = f̄(y | x).

Proposition 2.6.5. The conditional logOp respects CEB for a decomposable CG G when
distributions f ji (·) and fDMi (·), i ∈ [n], j ∈ [m], are backward sequentially updated.
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In Chapter 3 we discuss a variation of this result to cases where different groups of
experts are responsible for disjoint subsets of the vertices of the CG. Furthermore, in
Chapter 4 we develop recursions in dynamic settings which mirror the backward sequen-
tial updating of Faria and Smith [1997].

2.6.2.3 Aggregation in Complex Problems. The previous sections considered
situations where experts can simply provide probabilities, possibly in a multivariate
setting, for the whole domain under study. However, as we have extensively argued, in
the applications we have in mind this can be only rarely the case. A first attempt to
generalise such framework for expert judgement combination was proposed in Bordley
[2009]. In that paper each expert delivers probabilities over a separate, but related, set
of events and aggregating methods are then developed to reconcile their judgements into
a unique probability distribution.

In complex applications however, experts can rarely simply deliver numbers represent-
ing their estimates and the uncertainty around these. They often run their own models
and observe their outputs to then deliver the required uncertainties [French, 2011]. This
should be apparent from the RODOS discussion in Chapter 1. This issue was already
noticed in nuclear emergency management in Cooke and Goossens [2000]. The ENSAM-
BLE project [Krishnamurti et al., 2000, Mikkelsen et al., 2003] is another example of
this type of combination, where the outputs of different meteorological models need to
be combined into a unique weather forecast. These types of combinations introduce new
challenges since correlated estimates and uncertainties may arise at both the expert and
the model level.

French [2011] pointed out that the issue becomes even more delicate when models need
to be chained together as in the RODOS modules’ structure exemplified in Figure 1.2.
Very little has been said on this issue and some early discussion on possible solutions
were proposed in French et al. [1991]. In the following chapters we explicitly address
these types of problems and define a framework to coherently network together models
and expert judgements.

2.7 Conclusions and Contributions

This chapter has summarised the main aspects of the Bayesian approach to inference
and decision making that are relevant for this thesis. We have reviewed a variety of
methods to represent both the uncertainties and the preferences of individual DMs.
However we have noted that current methods for groups of DMs and for combining the
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judgements of several experts in complex domains are limited. In the following chapters
we extend Bayesian methodology to allow for a coherent aggregation of experts’ beliefs
and preferences in complex domains. We are able to show that many of the graphical
models we have introduced provide an intuitive basis to do this.

Note that some of the concepts introduced in this chapter, namely directional utility
diagrams, MIDs and their evaluation are original contributions to the literature. We
discuss additional features of these models in the following chapters.

2.7.1 Contributions

Having introduced in details the normative framework of Bayesian decision analysis and
inference, we can now discuss more explicitly the contributions of this thesis to the
literature. To increase readability, we discuss the extensions we propose in the same
order as in the list on pages 13-14.

• in this chapter we have shown how probabilistic inference can be carried in a
distributed fashion for a variety of models when certain independences are assumed
for the model parameter vector (specified in Definition 2.3.9 for BNs, in Definition
2.3.21 for MNs, on page 39 for CEGs and in Proposition 2.3.39 for MDMs). In
Section 3.6 we introduce weaker conditions for these models, enabling distributed
inferences when different panels of experts deliver the required probabilities for
disjoint subsets of the vertex set of the underlying graph;

• the combination rules for expert judgements of Faria and Smith [1997] briefly
reviewed in Proposition 2.6.5 work when each expert deliver probabilities for every
variable of an underlying CG. We extend this result in Section 3.6 to cases where
experts deliver judgements only for subsets of the graph’s vertex set;

• in Section 2.3.4 we introduced the Perlean notion of causality and discussed Perlean
intervention in Definition 2.3.49. In Section 3.5 below we introduce a new notion
of causality extending the one of Pearl in two ways: first, our definition does not
require the existence of an idle system, but instead assumes the existence of a
natural comparator - a decision rule which is standard in the domain examined;
second, it allows for more general interventions than the ‘do’ standard operator;

• Definition 2.4.23 introduced bidirectional utility diagrams, a flexible graphical rep-
resentation of partial utility independence. In Chapter 4 (and specifically Defi-
nition 4.1.8 and Proposition 4.1.10) we introduce a particular subclass of these
models and deduce the utility factorization associated to this subclass. Such a
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class, together with a few other assumptions often made in practice (see Section
4.1), we enables the distributed computation of expected utility ū(d) of any policy
d as discussed in Theorem 4.1.13;

• the computation of the expected utilities for utilities in the class mentioned in the
previous point can be carried using a backward induction procedure which mirrors
the routine of Faria and Smith [1997] to pool probability distributions (explicated
on page 72); in Chapter 4 we introduce new backward inductions that instead of
pooling probability distributions, compute optimal expected utility in multi-expert
domains;

• in Section 2.1.2 we introduced moments and discusses their role in summarizing the
features of a distribution. Cowell et al. [1999] and Nilsson [2001] introduced closed
form recursions to compute moments of additive factorizations, as the ones in
Proposition 2.4.16, over a BN model. In Chapter 5 we generalize such recursions to
compute moments for multilinear factorizations introduced in Proposition 2.4.11;

• standard conditional independence, as discussed in Section 2.3.1., often implies
separations between certain functions of the model’s parameter that are not strictly
required for the computation of the moments mentioned in the point above. In
Section 5.3 we introduce new separation conditions, often implied by conditional
independence, allowing for the computations of the above moments;

• we define new symbolic inferential techniques in CEG and ID models, extending
current methods for discrete BNs. For these models, each entry of a probability
table, θi say, is considered as an indeterminate of a polynomial (or equally as a
variable in a computer algebra system) and inference is carried with no full nu-
merical specification of the model’s probabilities. For CEGs, we extend current
methods from symmetric to asymmetric probabilistic models. For IDs, we intro-
duce a symbolic definition of utility values and introduce the polynomial form of
the expected utilities associated to these models.



Chapter 3

The Integrating Decision Support
System

The probabilistic decision support techniques for single users we reviewed in Chapter 2
have many advantages: these are coherent from a Bayesian viewpoint and can embed ex-
pert judgement when necessary. However the types of demands of current applications,
such as the nuclear one we reviewed in Section 1.2, require new methods to coherently
combine the outputs of networked experts systems in order to provide an integrated
study of the whole domain. Therefore, as argued in Chapter 1, what is needed is an in-
tegrating DSS, taking very selected probabilistic outputs from each contributing module
and pasting these expert judgements together to provide a comprehensive support.

We report in this chapter the results of Smith et al. [2015] where we developed a sound
statistical methodology to underpin such an integrating system. This provides a frame-
work to faithfully encode all usable and informed expert judgements and data leading to
the production of numerical scores ranking the available policies. We envisage that either
any of the models we reviewed in Section 2.3 or one of the many large scale hierarchical
Bayesian models of temporal spatial processes now in place [e.g. Best et al., 2005, Jewell
et al., 2009, McKinley et al., 2014, Wikle et al., 2001] informs one of the components of
the IDSS. Each of these modules, drawing on experimental and observational evidence
supplemented by expert judgement, either directly informs arguments of a decision cen-
tre’s utility function or provides the necessary input to subsequent components in the
process. Different panels of experts in the domain defined by each component oversee
and are responsible for the probabilistic outputs of the particular component capturing
part of an underlying process. The IDSS is then designed to draw these probabilistic
judgements into a single coherent picture to inform policy making. Such a coherent
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IDSS would thus embody all the qualitative common knowledge and fully defensible do-
main knowledge of the different panels, and provide baseline judgements around which
discussions and modifications could be proposed.

We describe here how and when it is possible to build such an IDSS and develop statisti-
cal methodologies to appropriately guide this knowledge integration. We first introduce
a new set of axioms embedding the agreement the group of experts needs to find and,
generalising results from Goldstein and O’Hagan [1996], we show that these can guar-
antee the existence of a coherent IDSS. We then define new group Bayesian updating
routines for both observational and experimental data for cases where the IDSS is un-
derpinned by a new notion of statistical causality. Lastly, we generalise both current
independence conditions and inferential methods for single DMs to groups in a variety
of graphical model classes.

The chapter is organised as follows. In Section 3.1 we briefly discuss the features of IDSSs
and the possible types of support such systems can provide. Section 3.2 builds the IDSS
methodology and discusses some technical properties that IDSSs need to entertain. In
Section 3.3 we present some very simple illustrative examples to show the difficulties and
the inconsistencies that IDSSs may exhibit. Section 3.4 presents a number of results
that ensure a coherent and faithful IDSS both a priori and after the introduction of
observational data. In Section 3.5 we then introduce a definition of causality tailored
to IDSSs and show that experimental evidence can be accommodated in these systems
whilst retaining coherence. In Section 3.6 we demonstrate that most of the models we
reviewed in Sections 2.3.2 and 2.3.3 can be used as integrating overarching structure to
aggregate the diverse expert systems’ outputs. We conclude with a discussion.

3.1 Features of Integrating Systems

The description of the RODOS system in Section 1.2 highlighted the need in current ap-
plications for systems capable of drawing different components of the problem together.
The IDSS methodology aims at supporting decision centres using expert judgement com-
ing from different panels with different knowledge. We call the collective the totality of
the experts in the panels, potential users and relevant stakeholders. The IDSS embeds
a particular type of ‘group’ decision analysis where everyone in the collective accepts
to delegate a particular aspect of the problem to the most informed experts only. The
features of this type of decision analysis are summarised in Figure 3.1. The collective
agrees on the overarching, meaning across panels, probabilistic, preferential and deci-
sion structure of the problem the IDSS addresses, as specified by the top three boxes



Chapter 3. The integrating decision support system 78

Figure 3.1: Structure of a Bayesian decision analysis for a group of distributed experts
from Leonelli and Smith [2015], generalising French [1997].

of the diagram in Figure 3.1. By overarching statistical model, we mean that the col-
lective identifies the main variables of the problem and the input/output relationships
between these, described, for instance, by a set of conditional independence statements
or by a graphical model as the network in Figure 1.2. On the other hand, a preferential
overarching model consists of the identification of the attributes of the domain under
study together with a set of preferential independences represented, for instance, by a
specific utility factorization. In both cases no actual probability and utility elicitations
are performed. Then each panel builds its own probabilistic and preferential models,
only concerning the domain under its responsibility. These are then integrated into a
unique entity to rank policies according to their expected utilities to provide decision
support, as indicated by the bottom boxes in Figure 3.1.

One of the challenges to this process of integration is that no one person or group owns
all the relevant probabilistic expert judgements. A first and essential requirement for
an IDSS is that its suggestions need to be defensible to the challenges a decision centre
might face to the validity of any analysis it might produce. Inputs and outputs of
the subsystems and specifically the associated expressions and balancing of uncertainty
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need not to be self contradictory with each other. Within a Bayesian paradigm this
is a coherence requirement over the variables determining the overall expected utility
scores, corresponding to the formal separability condition of Mahoney and Laskey [1996]
discussed in Chapter 1. In a nutshell, this entails that it is possible to define a unique
probability distribution over the complete system given the beliefs of the panels. For
example if probability distributions are assigned by two different panels to the amount
of contamination to the ground and in water respectively, which have within them an
assessment of the air dispersal of contamination, then this assessment has to be the
same for the two distributions. If this were not the case, a unique distribution over
the IDSS could not be computed and the credibility of the composite would be clearly
compromised.

A second requirement for a practical IDSS is that the panels deliver sufficiently rich
sets of information, so that they together provide enough information to compute the
expected utility function. This is in general impossible unless some assumptions are
made by the collective. Note that some parts of the process under examination may
be very well studied and modelled, but the knowledge about others is often patchy. So
for instance, dispersal models are now well established and able to compute a variety of
summaries of the spread of contamination, whilst the estimates of the political effects
of the accident on the stability of the affected regions often come only in the form of
expert judgement.

A third important property increasing the defensibility of the outputs of an IDSS is that
this incorporates the fullest and most reliable possible evidence within its probability
specifications. This in turn requires that expert judgements are provided only by the
most informed panels. However, IDSSs that are coherent a priori might not be so any
more after the introduction of data. For this reason, filters checking the data that is
admitted in the IDSS to perform Bayesian updating need to be implemented. If these
filters are in place, then panels can produce revised estimates of the required quantities
for the decision analysis, improving the overall suggestions the system is producing and
consequently supporting more focused decision making.

It is also often necessary for the IDSS to be used in real time, during the unfolding
of a certain crisis. Modules are now designed so that they are fast. However this is
not sufficient to guarantee that the composite as a whole is able to run quickly and
still retain its coherence. To achieve this, a necessary property is that the system is
distributed (or modular). By this we mean that the composite system calculates all
functions needed to evaluate the expected utility associated with its available decisions
from outputs delivered by individual panels, where these are allowed to be functions
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of other panels’ outputs. There are several advantages that derive from structuring a
problems so that the ensuing support is distributed:

1. first, because the responsibility for each aspect of the analysis can be devolved
to appropriate panels of experts, these are then more likely to deliver better cal-
ibrated judgements. This in some ways guarantees the semantic separability of
Mahoney and Laskey [1996]. The whole system might therefore be expected to be
more robust to the misspecification of beliefs [Cooke, 1991]. On the other hand,
if the system needs to be changed in the light of unexpected developments or un-
planned consequences, under suitable conditions, the management of these new
developments need only be addressed autonomously by the relevant panels. These
simply adapt their individual forecasts and inputs in the light of the new scenario
they face. These adjustments can then be folded back into the system to provide
a revised output of the relevant modules for other panels to use for their inputs;

2. second, the output of a distributed IDSS can produce answers to queries by decision
centres about the premises on which it is based and the calculations of its outputs,
by directing the query to the relevant panels. A route along which the relevant
panels can be queried as to the reasons of their contribution to the expected utility
scores is described in Figure 3.2, which shows the different levels of support that
can be implemented into an IDSS. When queried, generic DSSs are usually able
to present justifications for the overall expected utility scores and the ranking
of the available policies (third box of the second column from the left of Figure
3.2). However IDSSs are able to provide an additional level of support. The
system’s distributivity permits the IDSS to justify its suggestions in terms of the
modules outputs, since expected utilities are functions of these (see the bottom
box of the second column from the left of Figure 3.2). If these systems did not
exhibit this distributivity property, then such devolution may not be possible and
so any support would be much less transparent. This feature increases both the
comprehensibility and the feasibility of testing that, as argued by Mahoney and
Laskey [1996], current DSSs need to address;

3. third, distributivity ensures that different decision centres can be given the option
of choosing different modules to model the various components of the problem.
For example, in nuclear emergency management, different countries often prefer
to predict the spread of the contamination using their national agencies’ diffusion
models;

4. lastly, although many of the modules are probabilistic, distributivity allows us not
to construct a single composite probabilistic model: such a universal system would
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Figure 3.2: Description of the possible use of an integrating decision support system
for a decision analysis.

be infeasibly large and no one would own the joint distributions of the unwieldy
number of random variables. Even if it were possible to build such a system, the
component modules are usually being constantly revised both in their structure
and inputs. Were such an overarching probabilistic system possible to build, it
would therefore be obsolete before it was completed.

3.2 Construction of Integrating Systems

3.2.1 Some Technical Structure

A domain is defined by a large number of random variables Y = (Yi)T
i∈[n]. As often in

practice, the problem is heterogeneous and therefore assume different components of the
problem, denoted as Yi, are evaluated and overseen by m different panels {Gi : i ∈ [m]}
of domain experts, [m] = {1, . . . ,m}. The implicit, albeit virtual, owner of these beliefs
is henceforth referred to as the SB. Let D be a decision space including the available
policies d ∈ D. The SB needs to process the necessary probabilistic features delivered by
the different panels to calculate various statistics of a potential decision centre’s reward
vector R, some function of both Y and d.

Panel Gi donates to the SB various summaries of the distribution of the subvector Yi | d
under its jurisdiction, conditional on certain measurable functions {Li(Yi) : Li ∈ Li},
where Li could be empty, i ∈ [m]. For instance, in a generic graphical model the set Li
might consist of the possible configurations of values of the parents of Yi. Assume that
panel Gi, i ∈ [m], is able to make available the following:
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1. a collection of summary statements about the measurements under its jurisdiction

Ψy|θi = {Ψy|θi (θi, Li,d) : θi ∈ Θi, Li ∈ Li, d ∈ D}.

These inform the IDSS about the likelihoods fi(yi | θi, Li,d), Li ∈ Li, d ∈ D,
where θi ∈ Θi parametrise the (possibly conditional) density of Yi | θ,d. For
example, if Y were discrete and finite, then each panel might be asked to provide
certain contingency tables over Yi | θ,d, conditional on each Li ∈ Li. In this case
θi ∈ Θi would be the probabilities within all these tables. An important note
to make here is that there is often a typically much longer vector of parameters
φi ∈ Φi over which Gi has beliefs but which are not directly relevant to the
distribution of the predictions the IDSS needs to deliver;

2. a set of summaries about its prior beliefs

Ψθi =
{

Ψθi (Li,d) : Li ∈ Li, d ∈ D
}
,

from the panel prior densities πi(θi | Li, d), d ∈ D, Li ∈ Li. In the above example
this would be a joint probability distribution over the entries of the relevant con-
tingency tables. Note that often these panel beliefs are calculated by marginalising
out φi ∈ Φi;

3. from these two sets of quantities, the calculated collection of summaries

Ψyi =
{
Ψyi (Li,d) : Li ∈ Li, d ∈ D

}
,

about the marginal distribution of Yi | d conditional on each event Li. Here
Ψyi (Li,d) is calculated from Ψy|θi (θi, Li,d) by Gi marginalising over θi using
Ψθi (Li,d) for each Li ∈ Li, d ∈ D. In the example above, these might be the
corresponding expected conditional tables where expectations are taken across the
probability vectors θi. These are the quantities the IDSS uses to calculate its ex-
pected utility scores associated with its available decisions and to help a decision
centre to determine its most efficacious policy.

3.2.2 Common Knowledge Axioms

Suppose that after a series of decision conferences (see Section 2.6.1) held jointly across
the panels, stakeholders and potential users, all have agreed the types of decisions the
IDSS supports to a sufficient level of specificity to provide an agreed qualitative frame-
work across all interested parties around which a quantitative structure can be built. To
this purpose we make three assumptions.
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Axiom 3.2.1 (policy consensus). The collective agrees the class of decision rules d ∈ D
examined by the IDSS.

This class of feasible policies considered depends not only on what is logical, such as
when various pieces of information are likely to become available, but also what might
be allowable, either legally or for other reasons.

Axiom 3.2.2 (utility consensus). The collective agrees on the class U of utility functions
supported by the IDSS.

In the complex multivariate settings we address here, the utility function u(r,d) needs
to entertain certain types of preferential independence in order to allow for a distributed
analysis. In this chapter we assume that some additive or multilinear factorisation is
believed to hold. In Chapter 4 we introduce a large class of partial utility independence
models, of which additive and multilinear factorisations can be seen as a special case,
that can allow for distributed analyses. Again the choice of U is often resolved using
decision conferencing across the members of the collective.

Axiom 3.2.3 (structural consensus). The collective agrees the variables Y defining the
process - where for each d ∈ D, each u ∈ U is a function of Y - together with a set of
qualitative statements about the dependence between various functions of Y , θ and d.
Call this set of assumptions the structural consensus set and denote this by J .

This last consensus might be expressible through agreement that a particular graphical
or conditional independence structure across not only the distribution of Y | θ,d, but
also over the one of θ | d is valid, d ∈ D. For instance, the structural consensus
might include the assumption of local and global independence of the parameter vector
in a BN model (see Section 2.3.2.2). Other information that might be included in J
could be a consensus about certain structural zeros or known logical constraints (such
as probabilities needing to add to one and be non-negative).

Definition 3.2.4. Call the set of assumptions forming the union of the utility, policy
and structural consensus (U ,D,J ) the Common Knowledge-class (CK-class)).

Technically, we can think of the CK-class as the qualitative beliefs that are shared as
common knowledge by all panel members and potential users. The CK-class represents
the foundation around which all inference within the IDSS takes place. Note that this
depends not only on the domain and needs of users of the system, but also on the
constitution and knowledge bases of the panels.

We now provide a list of the types of quantitative information needed to populate the
CK-class and to calculate the expected utility ū(d) of the available decisions d ∈ D.
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To achieve this, the SB needs the decision centre’s choice of u(r,d) ∈ U together with
enough probabilistic information to calculate the expectations of these utilities. At worst
this might need to be the full distribution of R. Alternatively and more commonly for
typical choices of U , all that might be needed is the distribution of the margins on certain
specific functions of R or simply some summaries.

Axiom 3.2.5 (quantitative delegation consensus). The collective agrees to take on the
sample summaries Ψy|θi , the panel prior beliefs Ψθi and the panel marginal inputs Ψyi
delivered by Gi as its own, i ∈ [m].

This axiom essentially demands that everyone agrees that it is appropriate to defer their
judgements to the panel which is most informed about each domain vector. A sufficient
set of qualitative conditions justifying its use is given in Section 3.4.1.

3.2.3 Properties of Integrating Systems

The above axioms specify the structure of the IDSS, but these do not in general guarantee
that the output of the system provides coherent decision support. In this section we
introduce concepts that characterise what a ‘good’ IDSS is.

Definition 3.2.6. An IDSS is adequate for a CK-class if the SB can unambiguously
calculate the expected utility scores, for any decision d ∈ D and any utility function
u ∈ U , from the panel marginal inputs Ψyi delivered by Gi, i ∈ [m].

One particular useful refinement of adequacy is the following.

Definition 3.2.7. An IDSS is universally adequate for a CK-class if the SB can un-
ambiguously calculate the distribution of R from the panel marginal inputs Ψyi delivered
by Gi, i ∈ [m].

An adequate IDSS is able to derive a unique score for each option on the basis of the
individual panels’ inputs. An IDSS clearly cannot be fully functional unless it has this
property. For a universally adequate IDSS this is true regardless of the form of U .

To be defensible the IDSS needs another property.

Definition 3.2.8. An IDSS is sound for a CK-class if it is adequate and the SB can
coherently admit all the assessments Ψy|θi ,Ψθi and Ψyi , i ∈ [m], as her own, the SB’s
underlying belief model being shared with those of the relevant panels.
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A sound IDSS does not necessarily need to embody the genuine beliefs held by the panel
members and potential users based on the totality of their own personal evidence. This
would be too much to ask since much of this evidence might be from poorly designed
experiments, formally unjustifiable to the public or simply anecdotal. However the sound
IDSS does present a defensible and conservative position all panellist should be happy
to communicate, and provide a benchmark for further discussion. Most importantly
soundness guarantees that the beliefs are formally separable.

A property we always assume to be part of a CK-class is that panels are variationally
independent, i.e Θ =×i∈[m] Θi (see Definition 2.3.11). If this were not the case, then
beliefs of one panel would be necessarily shared with the ones of other panels. In such
case both soundness and distributivity could not hold for IDSSs.

3.3 Illustrative Examples

In this section we present a series of simple and intuitive examples illustrating the IDSS
machinery and the dangers associated to non coherent belief specifications.

3.3.1 Strong Adequacy and Soundness a Priori.

Let m = 2, R = Y = (Y1, Y2)T, where Yi is binary, i ∈ [2], θ parametrise the density
of (Y1, Y2) | θ,d, and suppose a generic decision space D. Here the random variable
Y1 is an indicator of whether or not the contamination is dispersed in the area and
Y2 is an indicator of whether or not the population is affected by the accident. The
sample summary delivered by G1 is θ1 = P(Y1 = 1 | θ1,d), whilst G2 delivers {θ20, θ21},
where θ20 = P(Y2 = 1 | Y1 = 0, θ20,d) and θ21 = P(Y2 = 1 | Y1 = 1, θ21,d). Write
θ2 = (θ20, θ21)T. Note that in this case L1 is empty, whilst L2 consists of the possible
outcomes of Y1.

If a CK-class includes U , an arbitrary utility on R, then, since the above probabilities
fully define the model, for strong adequacy the SB needs to be able to calculate the
expected joint probability table of Y | d. Specifically this corresponds to the expected
values µ̄ = (µ̄00, µ̄01, µ̄10, µ̄11)T of θ̄ = (θ̄00, θ̄01, θ̄10, θ̄11)T, where by definition

θ̄00 = (1− θ1)(1− θ20), θ̄01 = (1− θ1)θ20, θ̄10 = θ1(1− θ21), θ̄11 = θ1θ21.

Suppose that the qualitative statement θ1 ⊥⊥ θ2 | d is in the CK-class for every d ∈ D.
Letting µ1 = E(θ1 | d) and µ2 = (µ20, µ21)T = (E(θ20 | d),E(θ21 | d))T, we then have
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that

µ̄00 = (1− µ1)(1− µ20), µ̄01 = (1− µ1)µ20, µ̄10 = µ1(1− µ21), µ̄11 = µ1µ21.

Suppose G1 and G2 make available their expectations µ1 and µ2, respectively. Then,
because of the independence statements between the parameter vectors in the structural
consensus, the IDSS is a strongly adequate system with the delivered assessments, pro-
viding the SB with all the information needed to calculate the expected utility functions
using the formulae in (3.3.1). It is also sound since these inputs are consistent with
any probability model over (Y , θ1,θ2) | d with these expectations and the independence
between the parameter vectors.

It is not a trivial condition that SB’s beliefs required for either adequacy or strong
adequacy are a function of the panels beliefs only. For example the full joint distribution
of Y | θ,d is not fully recoverable from the marginal densities over θ1 | d and θ2 | d
two different panels might simply provide, since the SB cannot derive the conditional
covariance between θ1 and θ2 given d which was needed to calculate the conditional
covariance between Y1 and Y2 given d.

3.3.2 Adequacy and the Risk of non Soundness.

Assume a CK-class gives Y the same meaning as in the previous section. However add
to the CK-class the additional structural assumption that Y2 ⊥⊥ Y1 | θ1,θ2,d whatever
decision d ∈ D is made. Thus, once the probabilities of these events are known, it
is generally accepted that learning that contamination has been introduced in the en-
vironment does not affect the judgements about the health effects on the population.
Note that in this case Li is empty, i ∈ [2]. Suppose G1 delivers the beta distributions
Be(p1, q1) for θ1 = P(Y1 = 1 | θ1,d) and G2 has the beta distributions Be(p2, q2) for
θ2 = P(Y2 = 1 | θ2,d). Note that because of the structural assumption above, our
notation is now such that θ2 = θ20 = θ21. Consider two possible CK-classes where a
decision centre is known to draw its utilities ui ∈ Ui, i ∈ [2], from one of the families
below

u1(y1, y2,d) = a1 + b11y1 + b12y2,

u2(y1, y2,d) = a2 + b2y1y2,

where a1, a2 ∈ R and b11, b12, b2 ∈ R>0. If U1 is in the CK-class then the SB needs
only Gi to supply its prior mean µi of θi | d, i ∈ [2], where µi = pi(pi + qi)−1, in order
to calculate the expected utility associated to d. So there is some redundancy in the
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delivery of G1 and G2: panels only need to specify their prior means for every d ∈ D
and not their whole marginal distributions over θ1 | d and θ2 | d.

However, if U2 is in the CK-class, then the SB needs to be able to calculate

E(Y1Y2 | θ1, θ2,d) = E (θ1θ2 | d) ,

and the panels prior means are no longer necessarily adequate. For this to be so the
CK-class then needs the additional assumption θ1 ⊥⊥ θ2 | d. In this case

E(Y1Y2 | θ1, θ2,d) = E(θ1θ2 | d) = µ1µ2,

and the IDSS retrieves adequacy. However, this additional common knowledge statement
needs to be credible. For instance, suppose that p1 + q1 = p2 + q2 = σ, so that Θ1 ×Θ2

is parametrised by (µ1, µ2, σ). Then, it is easily checked that the collective can specify
its joint beliefs over the probabilities on the 4 events of the form (y1, y2), y1, y2 = [1]0 =
[1] ∪ {0}, with a Dirichlet distribution, Di(a00, a10, a01, a11), where

p1 = a10 + a11, q1 = a00 + a01, p2 = a01 + a11, q2 = a00 + a10,

since, from well known properties of the Dirichlet distribution [see e.g. Geiger and Heck-
erman, 1997], this is consistent with the given margins. However this collective prior
is not consistent with the independence assumption θ1 ⊥⊥ θ2 | d given above. From
the properties of the Dirichlet (see Appendix C.1.2), the SB’s mean of θ1θ2 | d is
given by a11σ

−1 where σ = a00 + a10 + a10 + a11, which is not equal to µ1µ2 unless
ρ = σ−2 (a11a00 − a10a11) = 0, since ρ is the unique solution to

µ1µ2 = a11σ
−1 ⇐⇒ (a10 + a11)(a01 + a11)

σ2 = a11
σ
.

So the SB cannot calculate E(θ1θ2 | d) from the inputs delivered by the panels. In fact
E(θ1θ2 | d) = µ1µ2 + ρ, which is unidentified from the margins provided by the panels.

3.3.3 Bayesian Updating

Ideally we would like the IDSS to be distributed so that panels can autonomously update
their probabilistic beliefs as they receive new information. To illustrate how distribu-
tivity might be possible, suppose a random vector (X1,X2) is sampled from the same
population as (Y1, Y2) in the model above and that, for each d ∈ D, θ1 ⊥⊥ θ2 | d is
in the CK-class. Each panel Gi next refines its probabilistic assessments by observing
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its own separate randomly sampled populations, xi, and then updates its beliefs, given
each d ∈ D, from πi(θi | d) to πi(θi | d,xi), i ∈ [2].

Now the two panels need to deliver only their respective posterior means E(θi | d,xi), i ∈
[2], d ∈ D. The SB can then act coherently and as if she had processed this information
on her own: the IDSS is therefore sound and distributed. So in particular once all the
data accommodated into the composite is of the form of autonomous random sampling,
inference can be simply delegated to the appropriate panels who simply periodically and
independently revise their judgements.

However note that parameter independence is critical for this distributivity property.
Assume the SB uses the additive utility class U1, but that there are no clear reasons
why θ1 ⊥⊥ θ2 | d should be in the CK-class, so that the prior over θ2 needs to be a
function of θ1 for at least some d ∈ D. Then with these beliefs, were the SB a single
agent, she would for example draw on what she learns about θ1 from x1 to update her
beliefs about θ2. So her posterior density on θ2 | d

π2(θ2 | x1,x2,d) =
∫ 1

0
π2(θ2 | θ1,x2,d)π1(θ1 | x1,d)dθ1,

has associated expectation E(θ2 | x1,x2,d) 6= E(θ2 | x2,d) in general. Therefore the SB
using E(θi | xi,d), i ∈ [2], will not be acting as a single Bayesian would. So the system
is no longer sound. Although when supporting evidence remains unseen the SB appears
to act coherently, her analyses are indefensible if subsequently challenged.

3.3.4 Learning with Randomised Samples.

Note that even if the parameter independence θ1 ⊥⊥ θ2 | d is justified a priori, the as-
sumption that data collected by the two panels and individually used to adjust their
beliefs does not inform both parameters is also a critical one. Continuing the example
above and assuming u ∈ U2, suppose that G1 and G2 both see the results of the exper-
iment in Table 3.1, where 100 units from the population are randomly sampled, for a
particular d ∈ D. Each panel uses this experiment to update its respective marginal
distributions over θi | d, i ∈ [2].

Then, if both began with a prior symmetric about 0.5, each would believe that its
posterior mean would still be equal to one half. So were θ1 ⊥⊥ θ2 | d in the CK-class
and assuming that all evidence the individual panels use is from the marginal counts
only, the IDSS would assign E(θ1θ2 | x1, x2,d) = 0.25. In contrast, were the SB to
see this table, assuming θ1 ⊥⊥ θ2 | d a priori with fairly uninformative priors on the
two margins, then her posterior mean of θ1θ2 | d would be approximately 0.05, which
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Y1/Y2 0 1
0 5 45 50 n− x1
1 45 5 50 x1

50 50 100
n− x2 x2

Table 3.1: A random sampled experiment for the example in Section 3.3.4.

is way different than the estimate above. No one may have access to the joint table
but just its marginal counts. So unless a protocol is adopted by the IDSS preventing
data inducing this type of ambiguity into the distributed IDSS, then this system might
be grossly misleading. Interestingly if the CK-class does not include Y2 ⊥⊥ Y1 | θ1, θ2,
then we can prove below that in the extended system there is a simple solution to this
problem. This is because the given sample data appears to challenge the assumption
Y2 ⊥⊥ Y1 | θ1, θ2,d. When an observed likelihood destroys the prior independence of the
parameters in the two posterior margins, the useful distributive property is lost because
the independence between θ1 and θ2 given d no longer holds a posteriori.

So we have illustrated above that even in the simplest of networks, considerable care
needs to be exercised before an IDSS can be expected to work reliably. In the next
section we prove some conditions which ensure an IDSS is sound both a priori and a
posteriori.

3.4 Conditions for a Coherent Integrating System

Having illustrated above some of the challenges faced by an IDSS, in this section we
investigate sufficient conditions leading to coherence and distributivity. We are able to
demonstrate that if panels are constructed wisely and that care is taken in defining what
observational data is allowed to inform IDSSs, the necessary conditions are not overly
restrictive.

However, an IDSS needs to have an appropriate protocol which systematically excludes
or delays some pieces of information. Suppose a sequence of datasets is presented to
the IDSS as time progresses. We call the information that such a protocol allows into
the system up to time t the admissible evidence and denote it by I+. This mirrors the
information set in the definition of the DLM model class of Section 2.3.3.1. The types
of information excluded or delayed by this protocol are simply those that either cause
ambiguity or lack of consensus and therefore break the distributivity of the IDSS. In
this sense the beliefs of the IDSS are conservative. Of course all statements in an IDSS
simply provide a benchmark from which further discussion - possibly involving more
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contentious sources of evidence - can ensue before acts are decided. But we argue that
primarily an IDSS needs to be able to deliver outputs based on considered and agreed
inputs from the expert panellist and that its judgements have a supporting narrative
associated with them, which can be appraised and, if necessary, replaced during any
given crisis as described in Figure 3.2.

Of course, that there exist relevant protocols for the selection of good quality evidence
for decision support is often assumed even for single agent systems, but its explicit state-
ment is frequently omitted. For instance, the Cochrane reviews are considered to be the
gold standard in decision support for medical treatments [Higgins and Green, 2008].
Their purpose is to pare away information which might be ambiguous and potentially
distort inferences through a highly-developed and trusted set of principles relevant to the
domain. Here, we assume that panels can select suitable evidence, mirroring Cochrane
in ways relevant to their domain. We also assume that such relevant analysis can be per-
formed locally. We demonstrate below that conditions justifying this strongly relate to
certain conditional independence statements leading to the separability across different
panel parameters of the observed likelihood of portfolios of data.

3.4.1 Group Conditional Independences

To deduce these independences, let ItCK ⊆ It+ denote all the admissible evidence which is
common knowledge to all panel members at time t and Itij denote the subset of It+ panel
Gi would use at time t if acting autonomously to assess its beliefs about θj , i, j ∈ [m].
Therefore ∪i,j∈[m]I

t
ij ⊆ It+. Further let It∗ = ∪j∈[m]I

t
jj .

The issue now is to determine what might constitute good criteria for determining
whether or not certain data can be admitted into the IDSS. One very convenient property
to demand - which, with other assumptions, ensures that the IDSS continues to be
unambiguous and distributed - is the following.

Definition 3.4.1. The IDSS exhibits panel independence with respect to It+ at time
t if ⊥⊥ i∈[m]θi | It+,d, for every d ∈ D.

It should be noted that in some contexts panel independence is a strong assumption. This
is most often violated when a panel has marginalised out various indirect explanatory
variables, φi ∈ Φi, used to build Gi’s model and some of these are dependent on the
indirect variables φj ∈ Φj of another panel Gj , i, j ∈ [m]. In this case marginalisation
can induce a sometimes quite strong prior dependence between θi and θj . The induced
dependence has close links with the presence of unobserved confounders [Greenland
et al., 1999] in the composite system.
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Let θi− = (θj)T
j∈[m]\{i}. Four other conditions are convenient to impose.

Definition 3.4.2. For any d ∈ D and i ∈ [m], we say that a CK-class of an IDSS is
delegatable at time t if

It+ ⊥⊥ θ | ItCK , It∗,d, (3.4.1)

separately informed at time t if

Itii ⊥⊥ θi− | ItCK ,θi,d, (3.4.2)

cutting at time t if

It∗ ⊥⊥ θi | ItCK , Itii,θi− ,d, (3.4.3)

and commonly separated at time t if

⊥⊥ i∈[m]θi | ItCK ,d. (3.4.4)

If an IDSS is delegatable at time t, then everyone agrees that the totality of admissible
evidence It+ fed into the IDSS is the union of evidence shared by all panels ItCK plus
the individual evidence It∗ each panel has about its own domain at that time. If the
system is not delegatable, then clearly no consensus across the panels could be achieved.
When a system is separately informed, evidence Gi might collect individually is not
informative about the parameters owned by other panellists once the evidence shared
between panels has been fed in. When a system is cutting, once ItCK and Itii are known,
no one in the collective believes that any panel has available information that Gi might
also want to use to adjust its beliefs about θi. So if for instance another panel, Gj
say, might have needed to marginalise out a parameter in θi to accommodate a piece
of evidence because its sample distribution depended on this component, then the IDSS
would not be cutting: this evidence would have told the SB not only about θj but also
θi. When parameters are commonly separated all the shared information separates the
parameters in the system. For example at time 0 if our overarching structure were a
BN, then this condition would be satisfied if we had prior global independence of the
parameter vector (see Definition 2.3.9). It would then continue to be satisfied if the
protocol ensured that the global independence of these parameters were preserved a
posteriori as in Proposition 2.3.12.

A CK-class including the above four properties is guaranteed to be sound and dis-
tributed, as specified by the following theorem, analogous to Goldstein and O’Hagan
[1996] about the use of linear Bayes in single agent systems.
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Theorem 3.4.3. Suppose an IDSS for a CK-class (U ,D,J ) is adequate, where U and
D are arbitrary and J includes the consensus that the IDSS is delegatable, separately
informed, cutting and commonly separated at time t. Then the IDSS is also sound and
distributed at time t.

The proof of this result is presented in Appendix A.2.1.

So a structural consensus J including an admissibility protocol respecting the four con-
ditions in Definition 3.4.2 gives rise to a sound system where the SB (and all panels)
assumes panel independence always holds (see the proof of Theorem 3.4.3 in Section
A.2.1 for more details). Moreover the system remains distributed. Although these con-
ditions could not by any stretch be called ‘regularity conditions’, they are nevertheless
satisfied by a very diverse collection of models, as we illustrate in Section 3.6. In particu-
lar, being irrelevance statements, these are qualitative in nature rather than quantitative
and so realistic candidates for being included in a CK-class. Note that this theorem ap-
plies to universally adequate systems, weaker conditions are needed for simply adequate
systems: see Chapter 5 for more details on this issue.

3.4.2 Likelihood Separation

We now focus on the introduction of observational data in the IDSS in order to perform
Bayesian updating, and consequently more focused decision making. We are able to de-
duce what conditions can ensure a sound and distributed IDSS to be so also a posteriori.
For this purpose, assume that the only evidence presented to the IDSS is in the form of
data sets xt = {xτ : τ ≤ t} which periodically become available to panels to populate
It+. Let l(θ | xt), t ≥ 0, denote a likelihood over the parameter θ of the distribution of
Y | θ,d after the data set xt has been admitted.

Definition 3.4.4. Call l(θ | xt) panel separable for the panel parameters θi, i ∈ [m],
if, given admissible evidence xt, it respects the product form

l(θ | xt) =
∏
i∈[m]

li(θi | ti(xt)), (3.4.5)

where li(θi | ti(xt)) is a function of θ only through θi and ti(xt) is a statistic of xt,
i ∈ [m].

Note that this likelihood factorisation has common features with the cutting likelihood of
Faria and Smith [1997] reviewed in Definition 2.6.4, in the sense that they both separate
the complete likelihood into sub-likelihood functions over different components of the
vector of interest.
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The following theorem then shows that an IDSS is sound a posteriori whenever data
admitted into the system has an associated panel separable likelihood.

Theorem 3.4.5. Assume the IDSS is universally adequate, delegatable, separately in-
formed, cutting and commonly separated at time t = 0. If at time t ∈ Z≥0, all data
admitted into the system has panel separable likelihood and the joint prior over θ | d,
d ∈ D, is absolutely continuous with respect to a Lebesgue measure, then the system is
also sound and distributed at time t. Conversely, if at any time t the likelihood is not
panel separable over a set of non-zero prior measure over θ | d, then the IDSS is no
longer sound and distributed.

The proof of this result can be found in Appendix A.2.2

Importantly, the converse stated in Theorem 3.4.5 implies that the nice properties asso-
ciated to distributed IDSSs break down whenever Bayesian updating is performed with
non panel separable likelihoods. In such a case data needs to be shared between panels
and communication channels need to be opened for the IDSS to remain coherent. This
for example was shown in the simple binary situation of Section 3.3.4. We briefly men-
tion in Chapter 6 methods that can be employed by an IDSS to deal with non panel
separable likelihoods.

Definition 3.4.6. Say the separability property holds for an IDSS if, at any time
t ∈ Z≥0, its admissibility protocol only admits data xt whose associated likelihood is
panel separable.

The following lemma identifies a protocol that selects datasets in such a way that the
separability property holds.

Lemma 3.4.7. Suppose panel independence holds at time t = 0 and assume all informa-
tion presented to the IDSS is the union of I0

+ and n commonly acknowledged independent
sampling schemes. Then, if the admissibility protocol of the IDSS only allows complete
data sets from these schemes, there is a unique maximal set of schemes forming It+ which
ensures soundness and distributivity.

Proof. Since the likelihood of any set of independent schemes is the product of the
likelihoods of the individual schemes, then if the likelihood of any of these schemes is
not panel separable over a set of non zero prior measure, the inclusion of the associated
data destroys soundness as stated by Theorem 3.4.5. So a maximal amount of sampling
evidence that can be admitted into the IDSS is simply the data from the set of schemes
whose likelihoods are panel separable.
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Thus, under the conditions of this lemma there is a natural collection of data sets of this
type to admit into the system. Note that this is the most informative of all such sound
systems in terms of standard measures [O’Hagan and Forster, 2004], for examples ones
defined in terms of Kullbach-Leibler information.

Issues are more challenging when information is sparse and data sets in incomplete form
might be essential to calibrate the system. This was seen in the various examples of
Section 3.3 where data on one or another margin would be admissible but not both.
However, we do not deal with this issue here (see Chapter 6 for a discussion).

3.5 Causality in Integrating Systems

3.5.1 A New Definition of Causality

As briefly reviewed in Section 2.3.4, recent works have formalised causal hypotheses to
make inferences about the extent of a cause. Here we define a new causal assumption
tailored to the needs of an IDSS.

Definition 3.5.1. Call an IDSS
{
D,d0}-determined if Ψθi , i ∈ [m], is a stochastic

function of Ψθi (Li,d0), known to Gi, for some prescribed decision d0 ∈ D.

Clearly, if this property is part of the CK-class, then this greatly simplifies the learning
each panel needs to undertake. Once they have specified their beliefs about the pa-
rameters θi under the decision d0, then the panel beliefs under other decisions can be
calculated automatically. Obviously, exactly whether and how this condition is satisfied
depends heavily on the domain of the IDSS. Importantly this condition is implicit for
classic Perlean CBNs in the following sense.

Lemma 3.5.2. A CBN with vertex set {Yi : i ∈ [n]} in a given CK-class is a
{
D,d0}-

determined IDSS whenever d0 is the decision not to intervene but to simply observe the
system, D consists of Perlean interventions, and panel Gi delivers beliefs about θBi,
i ∈ [m], where B1, . . . , Bm is a partition of [m].

Proof. This result is a direct consequence of the definition of a CBN given in Defini-
tion 2.3.50. Since the decision space consists of Perlean interventions only, each belief
Ψθi (Li,d) = Ψθi (Li,do(YA = yA)), A ⊂ [n], either coincides with the probabilities in the
idle system, coinciding with A = ∅, or consists of the degenerate distributions having
mass one at the manipulated values. Therefore this is a {D,d0}-determined IDSS.
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It can be checked that, for instance, causal hypotheses for CEGs or MDMs provide a{
D,d0}-determined IDSS, where

{
D,d0} are analogously defined. Within the context

of IDSSs it is helpful to extend the usual causal assumptions since the collective might
want the flexibility not to map the effects of enacting a Perlean do operation only,
but also more complex decision rules, thus embellishing D. Furthermore, the natural
comparator d0 for predicting what might happen, might not simply consist of observing
the idle system, but rather following routine procedures or past protocols. Therefore
our condition provides the basis for more comprehensive analyses which are not simply
based on the assumption of the existence of a non-manipulated system.

3.5.2 Admission of Experimental Evidence

Different panels in most IDSSs will want to accommodate not only observational data,
in ways discussed in Section 3.4, but also experimental one. Here covariates are con-
trolled and set to certain values and the effect on a response variable is observed. So,
for instance, in a nuclear IDSS one module might predict the radiation absorbed by
different types of food stuffs when exposed in a controlled and measured way in a lab-
oratory to certain types and durations of radiation. Implicitly, the causal hypothesis is
then adopted which assumes that these absorption distributions would be the same were
these plants exposed to the same types, durations and levels of exposure on the ground
in observational settings. In an actual accident the panel in charge of this absorption
module would receive the stochastic process of radiation data from a dispersion/depo-
sition module and match this to laboratory settings at the same values. Essentially,
this demands that the parameters in the observational setting can be identified with the
parameters in the controlled one.

So most operational IDSSs need to assume causal hypotheses relating controlled experi-
ments and the unfolding disaster. Recall that Daneshkhah and Smith [2004] showed that
in the context of BNs the panel independence assumption necessary to ensure an IDSS’s
distributivity is intimately linked and plausible only when certain causal hypotheses can
be entertained.

Here, just as in the observational case, we introduce a class of likelihoods associated to
data collected in designed experiments that can allow for distributed Bayesian updating.

Definition 3.5.3. Call an IDSS e−panel compatible for a collection of datasets xe =
(xe1 , . . . ,xep)T obtained from experiments e = (ei)T

i∈[p] if the likelihood associated to e
can be written as

le(θ | xe) =
∏
i∈[m]

lei (θi | tei (xe)),
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where lei (θi | tei (xe)) is a function of the parameter vector θi overseen by panel Gi only,
i ∈ [m], and tei (xe) is a statistic of xe.

By far the most common suite of such experiments is one composed of collections of inde-
pendent experiments that can be partitioned across the panels, where each experiment is
informative only about the parameters overseen by a particular panel. However a single
experiment may be informative for parameters overseen by different panels. If such an
experiment were orthogonal over the vectors of parameters under the responsibility of
different panels, then the orthogonality would ensure that the likelihood separates across
these vector parameters. Therefore, e-panel compatibility would still hold in this case.

Again an important special case that automatically implies this separation is when the
overarching qualitative structure is a CBN under experimental manipulations.

Lemma 3.5.4. Suppose an IDSS is
{
D,d0}-determined, where d0 ∈ D consists of

not intervening in the system. Then the IDSS is e-panel compatible for a collection of
experiments e = (ei)T

i∈[p], if e consists of independent randomised designed experiments
ek, k ∈ [p], that observe the response of a variable Yk in the vertex set of a CBN, where
each design consists of the Perlean intervention do(YΠk

= yΠk
), for yΠk

∈ YΠk
.

Proof. This is a straightforward consequence of the definition of a CBN in Definition
2.3.50. In this setting this implies that the θk’s appearing in the manipulated experiment
are equal to Gk’s corresponding parameters of interest in the observational setting,
coinciding to d0 ∈ D. But because this is so for the idle control d0, it is also true for all
d ∈ D since the IDSS is

{
D,d0}-determined.

Now that we have introduced classes of experiments associated to likelihoods exhibiting
the type of separation required for distributivity, we show that Bayesian updating can
be distributed to panels in the case the structural consensus includes a CBN.

Theorem 3.5.5. Suppose the CK-class of a
{
D,d0}-determined IDSS includes a CBN,

where d0 consists of not intervening in the system. Suppose panel independence is in the
CK-class and panels oversee separate components of the parameter vector θ. Suppose
data admitted in the IDSS at any time t is of the form of both a collection of ancestral
random samples of that CBN and a collection of randomised designed experiments as in
Lemma 3.5.4. Suppose all these data sets are independent of each other. Then if the
IDSS was distributed and sound a priori it remains so at time t.

Proof. Since all different datasets are independent of each other, the likelihood of the
arriving data is simply the product of the likelihoods associated with each component
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sample/experiment. So it is sufficient to show that each component likelihood is either
panel separable or e-panel compatible. Now Lemma 3.5.4 guarantees that the data
arising from these experiment is e-panel compatible and therefore exhibit the required
separability. At the same time Proposition 2.3.13 guarantees that the likelihood associ-
ated to the random sample is panel separable.

Again analogues of this theorem are also true for a CK-class of an IDSS which contains
different overarching qualitative models such as the CEG or the MDM. In particular,
Bayesian updating can be distributed to panels whilst retaining the soundness of the
IDSS whenever the causal assumptions underpinning the IDSS are such that parameters
in the observational setting can be identified with parameters in the controlled one, and
the associated likelihoods from these experiments are e-panel compatible.

3.6 Examples of Integrating Systems

We saw in Sections 3.4 and 3.5 that, provided an IDSS is such that certain qualitative
properties exist over the parameter vectors and the likelihood separates over these pa-
rameters in an appropriate way, then the composite system should remain distributed.
But how common are such models? The answer is that whilst many systems violate the
conditions needed, many others satisfy these. So, by choosing panels appropriately and
by demanding that only certain types of unambiguously interpretable data are admitted
into the IDSS, it is often possible to build such distributed systems. In this section we
present some well known examples when this is possible.

3.6.1 Non Dynamic Case

3.6.1.1 Independence Models and Additive Independence. We begin with a
trivial system made up of independent components and a linear utility. Suppose the
structural consensus of a CK-class includes the agreement of an independence model
over n random variables Yi, i ∈ [n] where the density of Yi | θ,d is parametrised by θi,
d ∈ D. Suppose panel Gi oversees variables with index in the set Bi, where B1, . . . , Bm

form a partition of [n]. Suppose the utility consensus is such that the utilities considered
by the IDSS can only take the form

u(r(y,d)) =
∑
i∈[m]

kiui(ri(yBi ,d)),
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where ri is a function of d and yBi only, i ∈ [m]. Then

ū(d) =
∑
i∈[m]

kiūi(d),

where
ūi(d) =

∫
θi∈Θi

ūi(d | θi)πi(θi | d)dθi,

πi(θi | d) is Gi’s prior over θi | d and

ūi(d | θi)
∫

YBi

ui(ri(yBi ,d))f(yBi | θBi ,d)dyBi .

This system is clearly a priori distributed. So the SB can devolve her calculations of
the expected utility of each d ∈ D to the relevant panels. Note that any joint prior
over θ | d with the given panel margins will clearly give the same function ū(d) and
hence the same scores whatever the joint distribution of component panel parameters,
so all these potential dependences can be safely ignored as in the example of Section
3.3.2. However, if the utility were not linear, then this would no longer be the case and
assumptions associated with panel independence would be needed: see Chapter 5 for an
analysis of this issue.

Example 3.6.1. Assume for simplicity that each panel oversees a univariate random
variable Yi and that individually each agreed that ui(r(yi,d)) = −y2

i . This setting allows
us to illustrate a first use of the tower rules of moments of Proposition 2.1.6, which are
extensively applied in Chapters 4 and 5. Note that, from Proposition 2.1.5, it holds that

ūi(d) = E(Y 2
i | d) = E(Yi | d)2 + V(Yi | d).

Now, applying the first two tower rules, it follows that

ūi(d) = E(E(Yi | θ,d))2 + E(V(Yi | θ,d))2 + V(E(Yi | θ,d)),

which is equal to
ūi(d) = E(µi | d)2 + V(µi | d) + E(ψi | d),

where µi and ψi are respectively the mean and the variance of Yi | d. Note that in this
setting ūi(d | θ) = µ2

i + ψi.

3.6.1.2 Bayesian Networks. We consider BNs as a first example of more compli-
cated multivariate models that can be part of the structural consensus of a CK-class.
Two of the results of Section 3.5 - specifically Lemma 3.5.4 and Theorem 3.5.5 - already
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considered the use of CBNs in IDSSs. One of the assumptions underlying the validity
of both results is that panels oversee disjoint subsets of the vertex set of the CBN. This
condition also has to hold for a generic BN in order for the IDSS to provide coherent
support.

More specifically, unless each panel Gi oversees a vector YBi , i ∈ [m], where ∪i∈[m]Bi =
[n] and ∩i∈[m]Bi = ∅, then soundness and distributivity cannot in general be guaranteed.
The proof of Theorem 3.4.3 showed that in order for soundness and distributivity to hold,
the panel independence condition needs to be entertained by the IDSS. In the context
of BNs this condition corresponds to the independence statement, for every d ∈ D,
⊥⊥ i∈[m]θBi | d. Note that this is a generalisation of the global independence condition
introduced in Definition 2.3.9. Under this assumption the following result, extending
Proposition 2.3.12 to groups of experts, then can be easily seen to hold.

Proposition 3.6.2. Suppose the structural consensus of a CK-class includes a BN model
with vertex set {Yi : i ∈ [n]}, where panel Gi oversees the vector YBi, i ∈ [m], with
B1, . . . , Bm a partition of [n]. Suppose there is a consensus that ⊥⊥ i∈[m]θBi | d, d ∈ D.
Then

π(θ | d) =
∏
i∈[m]

πi(θBi | d), (3.6.1)

f(y | d) =
∏
i∈[m]

fi
(
yBi | yΠBi

,d
)
, (3.6.2)

where ΠBi = ∪j∈BiΠj and

fi
(
yBi | yΠBi

,d
)

=
∫

ΘBi

fi(yBi | yΠBi
,θBi ,d)πi(θBi | d)dθBi . (3.6.3)

Proof. Equation (3.6.1) follows from the independence of the parameter vectors overseen
by different panels, whilst equations (3.6.2) and (3.6.3) are straightforward generalisa-
tions of equations (2.3.1) and (2.3.2) in Proposition 2.3.12, respectively, to vectors of
parameters associated to disjoint subsets of the vertex set.

Panel independence therefore guarantees that the marginal distribution of the BN can
be written as the product of the panels’ marginals just as in the single agent case.
Furthermore, learning in BNs where panels oversee disjoint subsets of the vertex set can
be distributed to the different groups of experts.

Proposition 3.6.3. Under the conditions of Proposition 3.6.2, suppose a complete
dataset x has been collected from the same population of Y . Then the IDSS posterior
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distribution can be written as

π(θ | x,d) =
∏
i∈[m]

πi(θBi | xFaBi
,d), (3.6.4)

where FaBi = ∪j∈BiFaj.

Proof. This follows by noting that equation (3.6.4) can be seen as an instance of equation
(2.3.3) in Proposition 2.3.13 applied to vectors of parameters associated to subsets of
the vertex set.

Therefore, under the conditions of Proposition 3.6.3 Bayesian updating can be dele-
gated to the panels and distributivity is assured after the introduction of data. Similar
recursions hold in the case the dataset admitted into the IDSS is ancestral.

Example 3.6.4. Consider the network in Figure 1.2 and suppose a BN with this DAG
is in the structural consensus of an IDSS. For ease of notation suppress the dependence
on d. Let

• Y1: power plant;

• Y2: source term;

• Y3: air dispersal;

• Y4: water dispersal;

• Y5: deposition;

• Y6: animal absorption;

• Y7: human absorption;

• Y8: human health;

• Y9: costs;

• Y10: political effects.

Suppose, as denoted by the colors in Figure 1.2 on page 7, that there are six panels
Gi, i ∈ [6], where the sets Bi are such that B1 = {1, 2}, B2 = {3, 4, 5}, B3 = {6, 7},
B4 = {8}, B5 = {9} and B6 = {10}. Panel independence then implies that

π(θ) = π1(θ[2])π2(θ[5]2)π3(θ[7]5)π4(θ8)π5(θ9)π6(θ10),

f(y) = f1(y12)f2(y345 | y2)f3(y6, y7 | y4, y5)f4(y8 | y7)f5(y9 | y5, y6, y8)f6(y10 | y3, y9),

where y12 = (y1, y2)T, y345 = (y3, y4, y5)T and [n]i−1 = {i, . . . , n}.

We can now extend the combination rules of Faria and Smith [1997] (Proposition 2.6.5),
based on a group of experts delivering probabilities over the whole network, to our
framework, where groups of experts agree to oversee only a subset of the network.
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Proposition 3.6.5. Under the conditions of Proposition 3.6.2, assume the underlying
DAG is decomposable, data admitted into the IDSS has panel separable likelihood and
each panel agrees to aggregate the density of its members using a conditional logOp.
Then, given panel independence holds a priori, the IDSS respects the CEB property if
densities are backward sequentially updated.

Proof. The result follows by first noting that under the assumptions of the theorem, an
IDSS so defined is sound and therefore a unique density function can be defined for the
whole network. Then noting that panel separable likelihoods in equation (3.4.5) can
be thought of as an instance of a cutting likelihood in equation (2.6.1), the proposition
follows from Proposition 2.6.5.

3.6.1.3 Object Oriented Bayesian Networks. Just as for BNs, OOBNs can be
used as an integrating tool in IDSSs when panels oversee disjoint subsets of the overall
networks. However, in addition, in this case a panel needs to be responsible for all the
instantiations of the subnetworks whose density functions are identified. More formally,
for a coherent IDSS whose structural consensus include the use of an OOBN, each class
of the model has to be under the responsibility of a unique panel, which delivers a unique
probability distribution, or a summary of this, for the encapsulated and the output nodes
of every object of that class.

Example 3.6.6. Consider again the OOBN defined by the networks in Figures 2.2 and
2.3. In order to guarantee coherency, a unique panel has to oversee the two object of
the unique class comprising the variables Y ′i and Y ′′i , i = [6]1. Possibly different panels
may have jurisdiction over the remaining variables, Y1 and Y7.

3.6.1.4 Probabilistic Chain Graphs. PCGs can be included in the structural con-
sensus of coherent and distributed IDSSs just as for BNs. This is because, as noted in
Section 2.3.2.5, every CG can be represented as a DAG, whose vertices are the strong
components of the initial CG. Suppose a PCG with vertex set {Yi : i ∈ [n]} has N strong
components {Yi : i ∈ Ci}, for Ci ⊆ [n]. Suppose further that there are m panels and
that Gi oversees YBi , where Bi = ∪j∈NiCj for Ni ⊆ [N ], such that B1, . . . , Bm form a
partition of [n]. Then it easily follows that, if ⊥⊥ i∈[m]θBi | d, equations (3.6.1)-(3.6.3)
hold for PCGs as well. By exploiting the one to one correspondence between a CG
and the DAG having as vertices the CG’s strong components, it can be shown that
adaptations of Propositions 3.6.3 and 3.6.5 hold for PCGs as well.

Example 3.6.7. Consider the PCG in Figure 2.5 and for ease of notation suppress
the dependence on d. Since this graph has associated DAG in Figure 2.6, under panel
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independence and assuming that a panel oversees only one of the three chain components
of the DAG, we have that

π(θ) = π1(θ1,θ2,θ3)π2(θ4,θ5)π3(θ6,θ7),
f(y) = f1(y1, y2, y3)f2(y4, y5 | y1, y2, y3)f3(y6, y7 | y4, y5).

3.6.1.5 Influence Diagrams. IDs can be used within IDSSs to represent in a unique
graphical representation structural, utility and policy consensus, since their vertex set
includes random, controlled and utility vertices. Importantly, as guaranteed by Lemma
2.5.5, IDs entertains a factorisation of the density function which mirrors the one of
BNs. Therefore all the results for IDSSs whose structural consensus includes a BN model
translate to generic IDs. This is sufficient to perform distributed inference. However for
the purpose of decision making, IDs need an additional constraint. Since joint elicitation
of the shape of marginal utility functions between panels are not allowed, then a unique
panel must have jurisdiction over all the parents of a utility node. Suppose panel Gi is
responsible for YBi , i ∈ [m], where Bi ⊂ V, the indices of the ID’s random variables.
Then the sets Bi, i ∈ [m], must be such that, if U = {ui : i ∈ [k]}, then, for every j ∈ [k],
Pj ⊆ Bi and Pj ∩Bl = ∅, for every i 6= l ∈ [m], where Pj is the parent set of uj .

3.6.1.6 Markov Networks. Whilst the conditions needed for distributivity in the
classes of models considered so far are fairly mild and are implied by the assumptions
commonly made in practice in single agents domains, these conditions can be fierce in
IDSSs whose structural consensus consists of a decomposable MN model can be fierce.
From Proposition 2.3.23, a reasonable way to construct panels is in such a way that
each is responsible for the marginal distributions over certain collections of cliques of
an agreed UG. Now we have a problem because two different panels overseeing adjacent
cliques both have responsibility for parameters of the margins of variables lying on the
separator. Variational independence is therefore compromised and panel independence
cannot hold in this setting. Suppose, however, that panels can agree on the same prior
over the separators - ensured for example through imposing into the CK-class that the
centre’s beliefs are strong hyper Markov (see Definition 2.3.21 and Proposition 2.3.22).
Even then, if the two adjacent panels update their beliefs autonomously with their own
personal information and this information is not shared, then there is no guarantee that
the resulting two posterior distributions of the two different panels will remain strong
hyper Markov (since Proposition 2.3.23 holds only in the case of complete datasets).

One simple solution to this problem when the underlying UG is decomposable is to give
precedence to one panel’s information about a particular separator and ignore all others.
This is equivalent to selecting a CG representation of this decomposable UG where
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Y1, Y2, Y3 Y4 Y1 Y2, Y3, Y4

Figure 3.3: Possible conversions of the undirected graph in Figure 2.4 into a directed
acyclic graph.

responsibility for a particular separator is delegated entirely to the panel delivering the
parent clique probabilities. The other panel is then only responsible for delivering the
probability judgements about its clique probabilities conditional on the values of the
separator. However with no ‘causal directionality’ implied by the graph, the choice of
the responsible panel looks rather arbitrary. Furthermore this type of protocol does
not extend straightforwardly to generic MN models and destroys the symmetry of the
original agreed model. It is interesting to note that an analogous situation is sometimes
encountered in meta analyses where experiments have been performed by different panels
and posterior results on these overlapping margins are communicated [see e.g. Jirousek
and Vejnarova, 2003, Massa and Lauritzen, 2010].

Example 3.6.8. Consider the UG in Figure 2.4, having two cliques {Y1, Y2, Y3} and
{Y2, Y3, Y4}, overseen by G1 and G2 respectively. This UG can be converted both into
the DAG on the left of Figure 3.3, where panel G1 has jurisdiction over the separator,
and the one on the right, where conversely G2 is responsible for the separator.

We note here however that there is situation in which updating can be distributed across
panels using the original MN model that does not break the coherence of the IDSS (which
recall does not respect variational independence). We formalise this case in the following
theorem.

Theorem 3.6.9. Let G be an decomposable UG, C and S the sets of cliques and separa-
tors of G respectively, and assume panel Gi oversees the variables in the clique Ci ∈ C.
Assume the IDSS is sound a priori and that each panel Gi plans to update its beliefs
using the dataset xti, independent to the ones of other panels. Then the IDSS is also
sound a posteriori iff ti(xti,S), the sufficient statistic for θS of xti, is equal for every
S ∈ S and for every Ci ∈ C such that S ⊂ Ci.

The proof of this result is reported in Appendix A.2.3.

Importantly this result shows that strong hyper Markov distributions are preserved when
updated with incomplete datasets of a particular type - i.e. partial datasets covering
together the whole graph and having consistent sufficient statistics over the separators.

Example 3.6.10. Consider again the MN with graph in Figure 2.4 and suppose a
covariance selection model is defined over this network as shown in Section 2.3.2.4.
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Suppose two panels oversee the two cliques of this graph and assume that a strong
hyper Markov distribution has been agreed over the graph. Suppose panels collect
random samples from the same family of Y only over the variables they oversee, de-
noted as x1 =

(
x1

1
T
,x1

2
T
,x1

3
T)T for G1 and x2 =

(
x2

2
T
,x2

3
T
,x2

4
T)T for G2. Let a

generic xij = (xijk)T
k∈[ni]. Then, as shown in equation (2.3.5), coherence is guaran-

teed a posteriori iff
∑
i∈[n1](x1

2i)2 =
∑
i∈[n2](x2

2i)2,
∑
i∈[n1](x1

3i)2 =
∑
i∈[n2](x2

3i)2 and∑
i∈[n1] x

1
2ix

1
3i =

∑
i∈[n2] x

2
2ix

2
3i.

3.6.1.7 Staged Trees and Chain Event Graphs. Suppose for each possible deci-
sion d ∈ D, panels can agree the topology of the underlying event tree T (d) and suppress
the dependence on the decisions for ease of notation. Suppose also all agree that panel
Gi, i ∈ [m], should deliver the edge probability vectors θij associated with edges em-
anating from each non-leaf vertex vij , j ∈ [mi], mi ∈ Z≥1. Let θij = (θijk)T

k∈[mij ], for
an mij ∈ Z≥1, θT

i =
(
θij
)T
j∈[mi]

and θT =
(
θT
i

)
i∈[m]. Then, for example, under random

sampling

l(θ | x) =
∏
i∈[m]

li(θi | x), (3.6.5)

where

li(θi | x) =
∏

j∈[mi]
lij(θij | x), (3.6.6)

and

lij(θi | x) =
∏

k∈[mij ]
θ
xijk

ijk , (3.6.7)

for
∑
k∈[mij ] θijk = 1 and xijk is the number of units in the sample x reaching vertex

vij and then proceeding down the k−th edge. Clearly this likelihood separates over
the parameter vectors overseen by different panels. It can be similarly shown that this
separability holds if the dataset x is ancestral - see Smith [2010].

The conditions for distributivity in IDSSs whose structural consensus includes either a
staged tree or a CEG are slightly stronger, but often met in practice. Let T be a staged
tree now, with stage set W = {wi : i ∈ [n]}. Let θWi be the probability vector associated
to a stage wi, i ∈ [n]. Unless θWi = θij for every j ∈ [mi] but one only i ∈ [m], the
distributed learning of equations (3.6.5)-(3.6.7) breaks down, since different panels have
jurisdiction over parameters that are identified (just as for OOBNs). However, panels
can be constituted in such a way that this condition is met. Note that distributivity
also holds whenever panels oversee disjoint subsets of the position set (or equivalently
disjoint subsets of the vertex set of a CEG), since the position set is a finer partition of
the situations of a tree than the stage set.
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Thus CEGs and staged trees can provide a framework where data can be quickly ac-
commodated in a distributed way (using the Dirichlet-Multinomial recursions discussed
in Section 2.3.2.7), given that the panels oversee either the positions or the stages of a
CEG/staged tree.

Example 3.6.11. Consider the staged tree in Figure 2.7. For distributivity to hold, a
unique panel needs to have jurisdiction over the positions v3 and v4 since these are in
the same stage.

3.6.2 Dynamic Models

The necessary separation conditions for IDSSs are not only entertained by non-dynamic
models, as exemplified in Section 3.6.1 in a variety of domains, but also in situations
where probabilities are allowed to be recursively updated in a dynamic fashion. For ease
of notation, in this section we leave implicit the dependence on the decisions d.

3.6.2.1 Multiregression Dynamic Models. The first model class we consider is
the MDM. Since each time slice of an MDM conditionally on the past is described by
a DAG, which does not change through time, the results concerning the use of BNs in
IDSSs transfer to these dynamic models straightforwardly.

We note that since a dynamic version of global independence is always assumed in
MDMs (Proposition 2.3.39), then panel independence is guaranteed whenever panels
oversee disjoint subsets of the vertex set. Furthermore, the densities f(yt | yt−1) can be
written as the product of functions overseen by individual panels. We formalise these
concepts in the following proposition

Proposition 3.6.12. Suppose the structural consensus of a CK-class includes an MDM
model whose associated DAG has vertex set {Y T

i : i ∈ [n]}, where panel Gi oversees the
vector Y T

Bi
, i ∈ [m], where B1, . . . , Bm form a partition of [n]. It then follows that for

every t ∈ T ,

π(θ(t) | It−1) =
∏
i∈[m]

πi(θBi(t) | It−1), (3.6.8)

f(y(t) | yt−1) =
∏
i∈[m]

∫
ΘBi

fi(yBi(t) | ytΠBi
,yt−1

Bi
,θBi)πi(θBi(t) | It−1)dθBi(t). (3.6.9)

Proof. Equation (3.6.8) is implied by the independence structure underlying MDMs
specified in Proposition 2.3.39. Equation (3.6.9) is an instance of equations (2.3.10)
and (2.3.11) in Proposition 2.3.40 applied to vectors of parameters overseen by different
panels.
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Example 3.6.13. Consider the MDM whose associated DAG is in Figure 2.11 and
suppose panels G1 and G2 have jurisdiction over (Y T

1 ,Y
T

2 ) and (Y T
3 ,Y

T
4 ), respec-

tively. Panel independence in this setting implies that, for any t ∈ [T ], (θ1(t),θ2(t)) ⊥⊥
(θ3(t),θ4(t)) | It−1. Furthermore the marginal density of the observables, conditional
on the past, can be written as

f(y(t) | It−1) = f2(y3(t), y4(t) | y2(t), It−1)f1(y1(t), y2(t) | It−1),

where

f2(y3(t), y4(t) | y2(t), It−1) =
∫

Θ34
f2(y3(t), y4(t) | y2(t), It−1,θ34)π2(θ34 | It−1)dθ34,

f1(y1(t), y2(t) | It−1) =
∫

Θ12
f1(y1(t), y2(t) | It−1,θ12)π1(θ12 | It−1)dθ12.

We are also able to show that the combination rules of Faria and Smith [1997], generalised
to IDSSs in Proposition 3.6.5, can be extended to dynamic frameworks.

Proposition 3.6.14. Under the conditions of Proposition 3.6.12, assume the underlying
DAG is decomposable and each panel agrees to aggregate the density of each member using
a conditional logOp. Then the IDSS respects the CEB property if densities are backward
sequentially updated through the vertices of the DAG and through time.

Proof. The proposition follows by Proposition 3.6.5, since each time slice of the MDM
can be thought of, conditional on the past, as a BN, whose underlying DAG does not
change through time.

3.6.2.2 Dynamic Chain Graphs. A generalisation of the class of MDM models is
the DCG model class introduced in Section 2.3.3.3. As discussed for PCG models, the
CG associated to a DCGs can be converted into a DAG whose vertex set consists of the
strong components of the initial CG. Therefore, as for PCGs and BNs, the conditions
required for DCGs to be in the structural consensus of a coherent IDSS are the same as
the ones of MDMs, but applied to the strong components of the associated CG.

3.7 Conclusions

In this chapter we have introduced the IDSS framework to coherently aggregate the
judgements of separate panels of experts agreeing on a common knowledge base. This
extends standard Bayesian reasoning in single agent frameworks to ones where beliefs
are delivered by many experts. We have shown in Theorem 3.4.3 that the conditions
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for the existence of a coherent IDSS are not overly restrictive. By introducing a new
notion of causality, we have then demonstrated that Bayesian learning can be distributed
to the different panels of experts, guaranteeing fast inferential routines, just as in the
standard Bayesian framework. We have then concluded the chapter showing that a
suite of standard Bayesian graphical models can be part of the structural consensus of
an IDSS. To do this, we have generalised standard independence notions and learning
routines of these common graphical models.



Chapter 4

Distributed Propagation in
Integrating Systems

The IDSS methodology introduced in Chapter 3 provides a coherent framework for
combining expert judgements and models into a unique entity. Inference can be also
distributed in such systems as extensively illustrated in the previous chapter. We now
focus on methods to exactly compute the expected utility scores of the available decisions
to support decision centres in policy choices. Some of these results have been already
reported in Leonelli and Smith [2015].

A commonly used naive method is for the group to simply plug in estimates of observ-
ables to compare the efficacy of different policies. However, in general, a proper risk
analysis of the composite must also fold in measures of uncertainty about the outputs
different panels deliver to the IDSS. It has been known for some time that, even in
very simple scenarios, ignoring uncertainties can lead a decision centre into choosing the
wrong course of action [see e.g. Leonelli and Smith, 2013a, and the examples of Section
4.4]. This is because expected utility scores for competing suites of countermeasures
often formally depend on these uncertainties.

In this chapter we consider a rather large CK-class, describing a new family of highly
asymmetric and dynamic decision problems with partial utility independence structures,
and deduce conditions that ensure expected utilities can be written as functions of the
panels’ delivered beliefs only. This can be done by introducing five structural assump-
tions specifying the group’s agreement in this setting. To our knowledge this is the first
application of partial utility specifications to the computation of expected utilities in
graphical decision models. We then develop distributed propagation algorithms over
the network of Expert Systems (ESs) of the IDSS between the panels and the SB. We
are able to demonstrate that it is surprisingly simple to calculate propagation algorithms

108
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based on the autonomous panels’ computations using standard backward induction, al-
beit in this novel and potentially very complex setting. These recursions extend standard
evaluation algorithms to dynamic asymmetric domains with both probabilities and util-
ities individually delivered by groups of experts. Distributivity conditions imply that
the IDSS is able to quickly produce forecasts and expected utility scores, enabling users
to interrogate the system in real time.

For ease of notation, in this chapter we suppress the dependence on the parameter vectors
and develop algorithms for the marginal distribution over the observables only. We have
extensively studied in Chapter 3 conditions over the parameters that can guarantee that
the marginal distribution over the whole IDSS can be written as the product of the
ones associated to each individual panel. Specifically, this is the case whenever panel
independence holds. We explicitly label again the dependence on the parameter vectors
in the examples of Section 4.4.

The chapter is organised as follows. Section 4.1 introduces the five structural assump-
tions defining a CK-class comprising many of the models commonly used in practice. In
Section 4.2 we show that these assumptions correspond to an instance of the common
knowledge axioms introduced in Chapter 3. In Section 4.3 we define our distributed
propagation algorithms to compute various expected utility scores. Section 4.4 presents
the workings of the algorithms for a variety of examples [that can also be found in
Leonelli and Smith, 2013a,b, 2015, Smith et al., 2015]. These examples also demon-
strate the dangers associated to a non complete uncertainty handling due to the lack of
integration of the modules. We conclude with a discussion.

4.1 An Instance of an Asymmetric and Dynamic Integrat-
ing System

4.1.1 The Common Knowledge Class

Let {Y (t)}t∈[T ], [T ] = {1, 2, . . . , T}, be a multivariate time series with finite horizon T

partitioned into n multivariate time series {Yi(t)}t∈[T ], with i ∈ [n]. Each individual time
series {Yi(t)}t∈[T ] is overseen by the panel of experts Gi and includes all the variables
associated to the i-th DSS. The sample space of Y (t) is Y =×i∈[n] Y i, where Y i is the
sample space of Yi(t), i ∈ [n], t ∈ [T ]. We denote with lower case letters instantiations
of these random vectors and, for any t ∈ [T − 1], the sample space of (Y (t), Y (t+ 1)) is
Y×Y . Recall that Y t = (Y (1)T, . . . ,Y (t)T)T and let Πi ⊆ [i−1]. Just as in Chapter 3
we assume here that the collective is jointly responsible for the definition of the necessary
overarching probabilistic, preferential and decision structures. The structure within each
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Figure 4.1: Example of a directed acyclic graph of a distributed dynamic model
depicting relationships between processes, not variables.

individual module is on the other hand agreed by the members of the relevant panel only
[as often in practice, see e.g. Von Winterfeldt and Edwards, 1986]. For ease of notation in
Section 4.1.1.1 we suppress the dependence on the decisions d with no loss of generality.
We again explicitly label this dependence from Section 4.1.1.2.

4.1.1.1 Distributed Dynamic Models. The overall statistical model the collective
needs to agree upon is, for the purpose of this chapter, a new dynamic graphical Bayesian
model customised to the needs of multi-ESs, here called Distributed Dynamic Model
(DDM). In a DDM, just as for MDMs and DCGs, relationships between time series
are depicted by a DAG whose vertices are Y T

i , i ∈ [n]. Here we assume that the vector
Y T includes all the variables the collective is planning to take into account during the
analysis.

We are now ready to formally define the DDM model class.

Definition 4.1.1. A DDM for the time series {Y (t)}t∈[T ] consists of:

• n− 1 conditional independence statements for each time point t ∈ [T ] of the form

Yi(t) ⊥⊥ Y t
[i−1]\Πi

| Y t
Πi
,Y t−1

i ; (4.1.1)

• a DAG G with vertex set V (G) = {Y T
i : i ∈ [n]} and edge set E(G) including an

element (Y T
j ,Y

T
i ) if j ∈ Πi, i ∈ [n].

The conditional independence structure of the DDM implies that the only information
to infer Yi(t) from Y t

[i−1]\Πi
, Y t

Πi
and Y t−1

i is from Y t
Πi

and Y t−1
i .

An example of a DAG associated to a DDM is presented in Figure 4.1, corresponding to
a dynamic variant of the BN in Figure 2.1. Such a DAG, in contrast to the more common
BN whose DAG represents relationships between single variables, specifies relationships
across the components of different multivariate time series. It is important to note once
more that statements embodied within this DAG are qualitative in nature and so in
particular can more easily provide the framework for a CK-class [Smith, 1996].
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Since the vertices of the underlying graph are time series, the topology of the DAG does
not change through time. Therefore, each time slice Y (t) of a DDM, conditionally on the
past, can also be described graphically by a DAG with the same topology. This topology
remains constant as time progresses. On the other hand the associated probabilities are
allowed to be dynamically updated through time, using for example the DLM approach
illustrated in Section 2.3.3.1. Each time slice DAG has vertex set equal to {Yi(t) : i ∈ [n]}
and edges (Yj(t),Yi(t)) if j ∈ Πi, i, j ∈ [n]. We call this DAG the time slice DAG of
the DDM.

Just as for other Bayesian graphical models in the literature, the DDM can be associated
with a factorisation of the probability density function, which depends on the topology of
the associated DAG. Specifically, as a direct consequence of the conditional independence
structure associated with a DDM, we have the following result.

Proposition 4.1.2. The joint probability density function f associated to a DDM for
the time series {Y (t)}t∈[T ] can be written as

f
(
yT
)

=
∏
t∈[T ]

∏
i∈[n]

ft,i
(
yi(t) | ytΠi

,yt−1
i

)
.

Proof. The result follows by first applying the chain rule of probabilities so that

f(yT ) =
∏
t∈[T ]

∏
i∈[n]

ft,i(yi(t) | y1(t), . . . ,yi−1(t),yt−1),

and then applying the conditional independences in equation (4.1.1).

For the purpose of the collective specification of the overarching probability model, it is
only relevant that the probability density can be qualitatively written as a product of the
terms ft,i. The actual algebraic form of these terms and the quantitative specification of
the associated parameters is agreed, as we specify below and as usual in practice, by the
members of the relevant panel only. In this sense the algorithms we derive in Section
4.3 are built on the agreed qualitative framework within the collective CK-class and are
driven by the topology of the agreed DAG.

We note here that the DDM model class is very large. Particular instances of the
DDM have been extensively studied in the literature. For example, from Proposition
2.3.40 it follows that the MDM model class, and therefore also the LMDM one, is a
particular instance of a DDM. Proposition 2.3.12 guarantees that BNs with appropriate
global independence conditions are a member of the DDM class. It can be similarly
shown that PCGs and DCG (Sections 2.3.2.5 and 2.3.3.3 respectively) can be thought
of as instances of a DDM under certain assumptions. Consequently, all these models
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can be used to embellish the qualitative structure of a DDM with explicit probabilistic
specifications.

We are now ready to make the following assumption. Recall that A′i is the index set of
the non-descendants of Y T

i , i ∈ [n].

Structural Assumption 4.1.3. The collective agrees to:

• describe the predictive factorisation of Y T by a DDM, whose DAG is connected
and decomposable;

• assume that the elements of {Y (t)}t∈[T ] are observed according to the order defined
by the following rules:

– Yi(t1) is observed before Yj(t2) if t1 < t2, for i, j ∈ [n];

– Yj(t) is observed before Yi(t) if j ∈ A′i.

The requirement that the graph is decomposable is simply a technical one, similar to
those used in junction trees propagation algorithms [see e.g. Lauritzen, 1992, 1996,
Smith, 2010]. This condition provides the basis for fast computational algorithms for
BNs. In particular this ensures that no new dependencies are introduced in the IDSS
through the backward induction steps we define below. Note that any DAG can be
converted into a decomposable one which then gives a valid (albeit inefficient) represen-
tation of the underlying processes [see e.g. Smith, 2010, for an explicit description of
this embedding, and Appendix B]. In this sense this assumption is not too fierce. Fur-
thermore, we can assume without any loss of generality that the network is connected,
since if this were not the case, then, when the structural assumptions we introduce below
hold, the overall problem could be decomposed into smaller and independent ones that
could be treated separately.

However, more critical is the assumption, as expressed in the second bullet, that it is
possible to observe all the quantities the collective planned to observe in the order they
happen. It has long been known that when the delivery of some of the data is delayed,
the underlying conditional independence structure associated to certain instances of a
DDM breaks down [Queen and Smith, 1993] and previously uncorrelated time series
overseen by different panels could then become highly correlated, thus destroying the
distributivity of the system and the validity of the propagation algorithms. For the
purpose of this chapter we assume that the receipt of information is never delayed. We
briefly discuss two potential practical ways of addressing violations of this assumption
in Chapter 6.
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4.1.1.2 An Asymmetric Decision Space. As we specify below, the structure of
the decision space the collective shares assumes that a potential decision centre has the
possibility of intervening after having observed any variable in the system. For i ∈ [n]
and t ∈ [T ], letDi(t) be the decision space available after having observed Yi(t), andD(0)
be the decision space associated to an initial decision. We also let DB(t) = (Di(t))T

i∈B,
Dt
B = (D(0),DB(1), . . . ,DB(t))T and Dt = Dt

[n], for B ⊆ [n]. We also denote with
dB(t) and dtB generic elements of DB(t) and Dt

B respectively.

We next make the following assumption. Recall that Ai is the set of the indices of the
vectors in the ancestral set of Y T

i , i ∈ [n].

Structural Assumption 4.1.4. The collective agrees:

• the specification of the decision spaces D(0) and Di(t), i ∈ [n], t ∈ [T ], defining
the acts a decision centre might take;

• to assume that the choice of a decision di(t2) ∈ Di(t2) is not constrained by a
decision dj(t1) ∈ Dj(t1) if j 6∈ A′i in the DAG of the DDM, j < i, t1 ≤ t2;

• to commit to a decision di(t) ∈ Di(t) only after having observed the value of YAi(t)
and Y t−1, and having already committed to decisions dAi(t) and dt−1;

• that the underlying DDM remains valid under any policy choice open to the centre.

Structural Assumption 4.1.4 guarantees that the graphical framework of the IDSS re-
mains unaffected after a decision is taken, so that the system provides a coherent picture
of the problem throughout the unfolding of events and actions. This is because under
the assumption above the topology of the time slice DAGs does not change. So the
algorithms we define in Section 4.3 are still able to compute coherent expected utility
scores through propagation. Of course we can still allow for the possibility that the
probability judgements within that structure might change in response to a decision -
they usually do.

Example 4.1.5. To illustrate Structural Assumption 4.1.4 we consider the diagram of
the time slice DAG at time t of our network, reported in Figure 4.2, which includes four
decision spaces Di(t), i ∈ [4]. Note that this is not a simple ID in reduced form since
Structural Assumption 4.1.4 does not guarantee that the decision spaces are totally
ordered. In fact these decision spaces only need to be partially ordered consistently
with the DAG of the DDM. Therefore, for instance, there is no fixed order in which a
decision centre commits to decisions d2(t) ∈ D2(t) and d4(t) ∈ D4(t). The constraints
associated with this partial order are denoted in Figure 4.2 by the absence of an edge
between these two decision spaces. A decision centre needs to commit to one of these
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Figure 4.2: A time slice directed acyclic graph of the distributed dynamic model in
Figure 4.1 including decision nodes.

decisions, di(t) ∈ Di(t) say, only after having observed the value of Yi(t), i ∈ [4]: in our
notation only after having observed YAi(t) and Y t−1 as specified by the third bullet of
Structural Assumption 4.1.4. Of course a decision di(t) ∈ Di(t) is made after having
already committed to dt−1 ∈ Dt−1. We further assume that the overall decision space is
such that D4(t)×D2(t), so that in particular these two decision spaces do not constrain
one another. In general decision spaces that are not connected by an edge in the non-
reduced representation of the network in Figure 4.2 cannot be mutually constrained.

The second assumption about the structure of the decision problem concerns a set of
irrelevance statements.

Structural Assumption 4.1.6. The collective agrees that

ft,i
(
yi(t) | dT ,ytΠi

,yt−1
i

)
= ft,i

(
yi(t) | dtA′i ,y

t
Πi
,yt−1

i

)
, (4.1.2)

for i ∈ [n] and t ∈ [T ].

Equation (4.1.2) states that a random vector Yi(t) does not functionally depend on the
decisions that are not included in Dt

A′i
. Alternatively this structural assumption could

be represented as a set of extended conditional independences [Dawid and Constantinou,
2014]. This assumption is a very weak one. For example the sufficiency theorem of Smith
[1989a,b] guarantees that a decision centre can always find one Bayes optimal decision
based on a decision rule which respects these statements. We further note here that
within each time slice this assumption is an instance of the causal consistency lemma
of Cowell et al. [1999], but applied to this more general setting. The lemma guarantees
that decisions can have a direct influence only on variables that are yet to be observed.
More generally here Structural Assumption 4.1.6 implies the lemma holds for partially
ordered decisions and decision spaces that are not simply product spaces.

Example 4.1.7. Consider the setting of Example 4.1.5. Since there is no fixed order
between Y2(t) and Y4(t), Structural Assumption 4.1.6 demands that Y4(t) does not func-
tionally depend on d2(t) ∈ D2(t). Similarly, we require that Y2(t) does not functionally
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depend on d4(t) ∈ D4(t). This can be noted in the diagram of Figure 4.2 by the absence
of edges between these nodes.

These are the irrelevances the collective needs to be ready to assume. Of course they
might believe that some decisions do not have any direct effect to additional variables
and thus assume further irrelevances. For example they might believe that the initial
decision space D(0) is irrelevant for the outcomes of the variables at the first time point,
Y (1). Such additional assumptions do not affect the validity of our algorithms.

4.1.1.3 Compatible Utility Factorisations. The last overarching agreement the
collective needs to find concerns the utility factorisation. We suppose the time series
with index in U ⊆ [n] to be the attributes of the decision problem. For i ∈ U , define
ri = ri

(
yTi ,d

T
Ai

)
to be a function of both yTi and dTAi

and let rT
B = (ri)i∈B for B ⊆

[n]. Note that each vertex Y T
i of the DAG of the DDM, for i ∈ U , can be uniquely

associated with an ri. We show below that this notation is very concise in depicting
utility independent statements between time series under the responsibility of different
panels. For simplicity we assume that i ∈ U for all i ∈ Le, where Le is the index set of
the leaves of the DAG, since otherwise the associated variables could be simply deleted
without affecting the results of the analysis.

In the multi-expert setting we study here joint utility elicitations across different panels
in a single integrating decision conference are only rarely possible [see e.g. Chapter 11
of French et al., 2009, and our review in Section 2.6.1]. So for example it is typically
possible to elicit the scores associated with the overall weight of one attribute over
another, for example as expressed by the criterion weights of multiattribute independent
utilities. But other more detailed elicitations, for example the appropriate forms of the
marginal utility functions, are better delegated to those closest to understanding the
consequences of such attributes [for an illustration of why this is so, see Von Winterfeldt
and Edwards, 1986]. However, for this type of delegation to be formally justified, it
is first necessary to assume that the collective is prepared to entertain certain sets
of preferential independences in order to be able to elicit, through individual panels’
assessments, a joint utility function.

Here we define a new multiattribute utility factorisation compatible with the DAG of the
multi-expert DDM we introduced above. Specifically, this first assumes that the time
series with index in U belonging to different ancestral components of the DAG of the
DDM are GAI (see Definition 2.4.10). The utility independence structure within each
of these components is then assumed to be described by a member of a certain class of
directional utility diagrams introduced in Definition 2.4.25.
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Definition 4.1.8. Let G be the DAG of a DDM of a time series {Y (t)}t∈[T ] and relabel
a vertex Y T

i of G with ri, i ∈ [n]. Let U ⊆ [n] be the index set of the attributes of
the decision problem. We say that a utility function u is in the class UG of utilities
compatible to the graph G, if:

• the ancestral components of the subgraph G′ of G induced by {ri : i ∈ U} are GAI;

• the independence structure associated to an ancestral component of G′, Ai say,
can be described by a subgraph of the utility diagram obtained by the following
procedure:

1. derive the subgraph G′′ of G′ induced by {rj : j ∈ Ai};

2. reverse the direction of every edge in G′′;

Example 4.1.9. Consider the DAG in Figure 4.1 and let U = [4]1. Recall that {4}
and {2, 3} are in different ancestral components and therefore in the class of compatible
utility factorisations r4 and {r2, r3} are GAI. The two utility diagrams derived following
the procedure in Definition 4.1.8 would then correspond to the following two networks:
one including only the vertex r4, the other with vertices r2 and r3 and an edge from r3

to r2.

We next show that compatible utility functions enjoy a useful factorisation. Recall that
Di is the index set of the descendants of ri.

Proposition 4.1.10. A utility function u over rU compatible with the graph G can be
written as

uG(rU ) =
∑
i∈Le

uGi (rAi) =
∑
i∈Le

∑
r∗0Ai
∈R∗0Ai

u
(
r∗0Ai

) ∏
j∈Ai

gj
(
rj | r∗0Dj

, r∗0Πj

)
, (4.1.3)

where

gj
(
rj | r∗0Dj

, r∗0Πj

)
=

 u
(
rj | r∗0Dj

, r∗0Πj

)
, if rj = r∗j in u

(
r∗0Ai

)
,

ǔ
(
rj | r∗0Dj

, r∗0Πj

)
, otherwise.

Proof. This result follows by first using the GAI factorisation in equation (2.4.7) over
the ancestral components and then applying the expansion in equation (2.4.10) to each
of these ancestral terms in decreasing order over their indices. The utility independence
structure associated to each directed utility diagram then guarantees the result follows,
as specified by Lemma 2.4.26.
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Each of the utilities uGi in equation (4.1.3) is the product of terms u(r∗0Ai
), corresponding

to functions of criterion weights [French and Rios Insua, 2000] and gj(rj | r∗0Dj
, r∗0Πj

)
which, from Lemma 2.4.26, is a function of rj only since the attributes rDj and rΠj are
fixed to a certain instantiation. An important consequence of Proposition 4.1.10 in this
multiexpert setting is that a compatible utility factorisation is a function of the criterion
weights and utilities whose arguments are overseen by individual panels only.

Example 4.1.11. Under the conditions of Example 4.1.9, the most general compatible
utility factorisation for the DAG in Figure 4.1 can be written as

u(r2, r3, r4) = u4(r4) + u(r∗2, r∗3)u(r3 |r∗2)u(r2 | r∗3) + u(r∗2, r0
3)ǔ(r3 |r∗2)u(r2 | r0

3)

+ u(r0
2, r
∗
3)u(r3 |r0

2)ǔ(r2 | r∗3) + u(r0
2, r

0
3)ǔ(r3 |r0

2)ǔ(r2 | r0
3).

We now make the following assumption.

Structural Assumption 4.1.12. The collective is able to identify an agreed compatible
multiattribute utility decomposition over rU within the class UG and to elicit the common
u(r∗0Ai

), i ∈ Le.

4.1.1.4 Distributed Expected Utilities. Under the structural assumptions intro-
duced above, which specify the qualitative structure of the decision problem, the ex-
pected utility function factorises into separate factors of the beliefs that particular indi-
vidual panels can provide themselves. To show this, let, for t ∈ [T − 1],

ūT
(
yT−1,dT

)
=
∫

Y
uG (rU ) f

(
y(T ) | yT−1,dT

)
dy(T ),

ūt−1
(
yt−1,dT

)
=
∫

Y
ūt
(
yt,dT

)
f
(
y(t) | yt−1,dT

)
dy(t).

These two terms correspond to the expected utility scores after marginalisation steps
have been performed over all the variables with time index bigger or equal than t in the
algorithms we define below.

We now show that any function ūt, t ∈ [T ], can be deduced recursively as a function of
the individual panels’ statements. Recall that Sj is the set of the indices of the sons of
Yj(t) in a DAG G (see Appendix B).

Theorem 4.1.13. Under Structural Assumptions 4.1.3, 4.1.4, 4.1.6 and 4.1.12, ūt, for
t ∈ [T ], can be written as

ūt =
∫

Y1
ũt,1

(
yt1,d

T
)
ft,1

(
y1(t) | yt−1

1 ,dt−1
1

)
dy1(t), (4.1.4)
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where

ũt,i
(
ytAi

,dT
)

=



∑
r∗0Ai
∈R∗0Ai

u
(
r∗0Ai

)∏
j∈Ai

gj
(
rj | r∗0Dj

, r∗0Πj

)
, i ∈ Le, t = T,

ût+1,i
(
ytAi

,dT
)
, i ∈ Le, t 6= T,

∑
j∈Si

ūt,j

(
ytA′j

,yt−1
j ,dT

)
, otherwise,

(4.1.5)

ūt,i
(
ytA′j

,yt−1
j ,dT

)
=
∫

Yi

ũt,i
(
ytAi

,dT
)
ft,i

(
yi(t) | dtA′i ,y

t
Πi
,yt−1

i

)
dyi(t), (4.1.6)

and ût,i is uniquely defined as the function for which

ūt+1 =
∑
i∈Le

ût,i(ytAi
,dT ), (4.1.7)

The proof of this theorem is provided in Appendix A.3.1.

Theorem 4.1.13 assures that the expected utility scores for any policy of an IDSS respect-
ing our new structural assumptions can be computed. We proceed to show in Section 4.4
below that the computation of these scores can be performed in a distributed fashion.

We note here that again the actual algebraic form of the terms in equations (4.1.4)-
(4.1.7) is not fundamental to the construction of a coherent distributed IDSS. This
form depends on the individual panels’ agreements concerning the quantities under their
particular jurisdiction. Importantly, however, any ūt can be written as a function of these
terms, whatever they are. Its computation, as we show in Section 4.3, can therefore be
obtained through a propagation algorithm, guided by the topology of the DAG of the
DDM, between each individual panel and the SB.

The quantities appearing in Theorem 4.1.13 are fundamental to later developments of
this chapter. So we now discuss their interpretation. The definition of ũt,i in equation
(4.1.5) depends on whether or not Yi(t) is a leaf vertex of the time slice DAG G. In
the former case, for t = T , this corresponds to the utility function over the appropriate
ancestral component, whilst, if t 6= T , this is simply equal to ût+1,i. If i 6∈ Le then
equation (4.1.5) consists of the sum of the terms ūt,j for j ∈ Si. Equation (4.1.6) defines
ūt,i which consists of the result of a marginalisation of ũt,i with respect to the conditional
density function ft,i. Finally, the theorem asserts that ūt+1 can be uniquely written as a
linear combination of the functions ût,i, for i ∈ Le. Throughout this chapter, for ease of
notation, we use the convention of writing the arguments of the utility functions u and
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g in terms of the attributes r, whilst for the other functions, e.g. ũt,i, the arguments are
written in terms of the random variables Y T and the decisions dT .

4.1.2 Components Agreement

It is often recommended that the evaluation of both the conditional utilities and the con-
ditional probabilities should be delegated to groups of individuals best able to compare
the efficacy and the likelihood of different value of that attribute [see for example Von
Neumann and Morgenstern, 1947, Von Winterfeldt and Edwards, 1986]. We therefore
assume the following.

Structural Assumption 4.1.14. Every expert within a panel Gi agrees on a proba-
bilistic model for the associated component DSS, ft,i, i ∈ [n], t ∈ [T ], as a function of
its inputs. In addition every expert in Gi shares a marginal utility function over ri, if
i ∈ U .

It is possible to encourage the experts within a panel to come to these agreements in
a variety of ways, appropriate depending on the context, for example through deci-
sion conferencing or by following a Delphi Protocol (see Section 2.6.1). Similarly, the
probabilistic individual agreement might consist of following certain pooling axioms (see
Section 2.6.2.1) or by using agreed software on expert inputs, for example a probabilistic
emulator (see Section 2.3.5).

4.2 Relation to the Axioms

In the previous section we followed the construction of an IDSS given in Leonelli and
Smith [2015]. This is because the structural assumptions of Section 4.1 more intuitively
describe the features of the types of IDSSs we consider in this chapter than the common
knowledge axioms of Chapter 3. However, we can simply note here that these structural
assumptions represent an instance of the axioms of Chapter 3.

The utility consensus in Axiom 3.2.2 simply corresponds in this chapter to the agreement
of a utility factorisation within the class of compatible utility functions as specified in
Structural Assumption 4.1.12.

The policy consensus in Axiom 3.2.1 consists of Structural Assumption 4.1.4 defining a
multivariate and asymmetric decision space.
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The structural consensus in Axiom 3.2.3 is specified by Structural Assumptions 4.1.3
and 4.1.6, which respectively consist of the agreement of using a DDM model and of a
shared set of extended conditional independences.

Lastly, the quantitative delegation consensus in Axiom 3.2.5 coincides with Structural
Assumption 4.1.14 where in this case panels agree to deliver conditional density functions
of the agreed DDM and conditional utilities of the shared compatible utility function.

4.3 Distributed Algorithms

Now that the structure of the IDSS has been fully defined, we can proceed to discuss
the computation of the expected utilities through propagation over the network of ESs.
We first introduce an algorithm which includes partial optimisation steps to deduce an
optimal expected utility score. We then consider two special cases of this algorithm. The
first one does not include optimisation steps and computes the expected utility score of
a specific policy, whilst the second works over a non-dynamic network of ESs.

4.3.1 Dynamic Optimisation Algorithm

In contrast to the quantities defined in equations (4.1.4)-(4.1.7), which compute the
expected utility score of a particular policy, we now include additional optimisation
steps to the algorithms. These enable us to identify an optimal policy. In fact we can
use exactly the same propagation procedure in this case. For this slight generalisation we
need to first define a new quantity, u∗t,i, which accounts for optimisations over decision
spaces. Let

u∗t,i

(
ytAi

,dt−1,dA′i(t)
)

= max
Di(t)

ũt,i
(
ytAi

,dt−1,dAi(t)
)
. (4.3.1)

This function is an optimised version, over the decision space Di(t), of ũt,i. We also let
ū∗t,i be the result of the marginalisation of u∗t,i. Specifically,

ū∗t,i

(
ytA′i

,yt−1
i ,dt−1,dA′i(t)

)
=
∫

Yi

u∗t,i

(
ytAi

,dt−1,dA′i(t)
)
ft,idyi(t). (4.3.2)

Before illustrating the algorithm using the network of Figure 4.1, we introduce a new
notation which is also used in the formal algorithms below. We let Gi: or SB: denote
the entity that is responsible for the corresponding operation, whilst we represent with
−→ Gi or −→ SB the fact that panel Gi and the SB, respectively, receives the value
of an appropriate function. So, for instance, Gi: ũt,i −→ SB denotes that panel Gi
computes the function ũt,i and communicates its value to the SB.
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Figure 4.3: Collective optimal expected utility algorithm over the last time slice of
the network in Figure 4.1.
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Figure 4.4: Collective optimal expected utility algorithm over the T − 1 time slice of
the network in Figure 4.1.

The following example describes the steps of the distributed propagation algorithm for
IDSSs whose structural consensus includes a DDM with associated DAG in Figure 4.1.

Example 4.3.1. The algorithm starts from the leaves of the last (time T ) time slice
DAG and assumes that each panel overseeing a leaf of the time slice DAG, Yi(T ) say,
has been provided with the term uGi . Panels Gi: ũT,i −→ SB, for i ∈ [4]2. Note that in
this case ũT,i simply corresponds to uGi . This step is represented by the dotted arrows on
the left network of Figure 4.3 from Y3(T ) and Y4(T ) to the SB. Then SB: u∗T,i −→ Gi as
in equation (4.3.1) for i ∈ [4]2. This is depicted by the curly arrows in the left network
of Figure 4.3. At this stage G4: ū∗T,4 −→ G1 and G3 :ū∗T,3 −→ G2, since Y2(T ) is the
father of Y3(T ) and Y1(T ) is the father of Y4(T ) (recall that Fi is the index of the father
of Yi(T )). These two operations are described by the dashed arrows on the left network
of Figure 4.3.

Now G2: ũT,2 −→ SB, where ũT,2 = ū∗T,3 since Y2(T ) has only one son. Then, as before,
SB: u∗T,2 −→ G2 and G2: ū∗T,2 −→ G1, since Y1(T ) is the father of Y2(T ). The whole
process is depicted by the network in the middle of Figure 4.3, where, as before, a dotted
arrow is associated to ũT,i, a curly arrow to u∗T,i and a dashed one to ū∗T,i.

Because Y1(T ) is the father of both Y2(T ) and Y4(T ), now G1: ũT,1 −→ SB, by simply
adding ū∗T,2 and ū∗T,4, received from panels G2 and G4 respectively. Panel G1 then
repeats the same procedure as the other panels, with the only difference that ū∗T,1 −→
SB and not to another panel, since G1 oversees the unique root of the DAG. This is
depicted by the dashed arrow in the right network of Figure 4.3.
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Algorithm 4.3.1: collective optimal expected utility(u,f ,G)

for t← T downto 1 (1)

do



for i← n downto 1 (2)

do



if i ∈ Le (3)
if t = T (4){
Gi : ũt,i = uGi −→ SB (5)
else Gi : ũt,i = ût,i −→ SB (6)

else Gi : ũt,i =
∑
j∈Si

ū∗t,j −→ SB (7)
SB : u∗t,i = maxDi(t) ũt,i −→ Gi (8)
if (i 6= 1) (9)

then
{
Gi : ū∗t,i =

∫
Yi
u∗t,ift,idyi(t) −→ GFi (10)

else



Gi : ū∗t,i =
∫

Yi
u∗t,ift,idyi(t) −→ SB (11)

if t 6= 1 (12)

then
{

for each j ∈ Le (13)
do

{
SB : ût−1,j −→ Gj (14)

else SB : u∗0 = maxD(0) ū
∗
t,i (15)

Theorem 4.1.13 states that ū∗T,1 = ūT is equal to the sum of the terms ûT−1,i, i ∈ Le. So,
if i is the index of a leaf vertex, SB: ûT−1,i −→ Gi. This is denoted in the left network
of Figure 4.4 by the double arrows. Panels Gi: ũT−1,i −→ SB, i ∈ Le, where ũT−1,i =
ûT−1,i. From this stage on, the message passing algorithm copies the calculations and
the actions of the previous time slice. So the arrows in Figure 4.4 match the ones on the
left network of Figure 4.3. The algorithm repeats the same sequence depicted by the
dashed, curly, dotted and double arrows in Figure 4.3 and 4.4, until it reaches the root
vertex of the first time slice. When this happens the SB, after receiving ū∗1,1 from panel
G1, computes a final optimisation step over the decision space D(0). The algorithm has
now been completed and can return the expected utility score of the optimal sequence
of decisions.

Having described the algorithm on the running example, we now introduce it for a
generic DDM and in particular for more realistic scenarios. Specifically, this algorithm
takes as inputs the utilities uGi associated to the ancestral components of G, denoted
as u, all the conditional density functions ft,i, denoted as f , and all the information
concerning the DAG G. A formal definition of the algorithm can be found in Algorithm
4.3.1, which is henceforth called collective optimal expected utility algorithm. For
simplicity, we have left implicit the arguments of various quantities the panels and the
SB communicate to each other.
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Theorem 4.3.2. Under Structural Assumptions 4.1.3, 4.1.4, 4.1.6, 4.1.12 and 4.1.14,
Algorithm 4.3.1 produces an optimal expected utility score resulting from a unique Baye-
sian probability model, informed only by the individual judgements delivered by the pan-
els.

The proof of this theorem is provided in Appendix A.3.2.

We highlight the relations between our algorithm and standard backward inductive
evaluation in Section 4.3.3 below.

The utility function is often a polynomial function in its attributes. When this is so,
its expectation is a polynomial in which the indeterminates are, in the continuous case,
low order moments. This can dramatically simplify the message passing algorithm for
computing the optimal policy as we illustrate below. As a result the IDSS often needs
as inputs only a few low order moments to work coherently. This is the main topic
of Chapter 5. Even in rather complex domains this in turn means that we can expect
the algorithms defined above to be almost instantaneous if each component module
can produce the values of these uncertainties under various policy choices efficiently.
A study of the polynomial structure of expected utilities in the rather more complex
discrete domain is reviewed in Section 5.6.1 and in Leonelli et al. [2015a].

4.3.2 The Expected Utility of a Policy

Algorithm 4.3.1 provides an operational guideline on how to compute the score associated
to an optimal policy. Recall however that the aim of a DSS is not only to identify
the decisions with highest expected utilities, but also to provide explanations and the
reasoning behind the outputs it provides [French et al., 2009]. It is therefore also relevant
to compute the expected utility score associated with any policy that might be adopted.
These scores then allow decision centres to compare the different available options in
more detail, possibly following the route described in Figure 3.2. To accommodate
this feature a simple variant of Algorithm 4.3.1 not including any optimisation steps is
presented in Algorithm 4.3.2, henceforth called collective expected utility algorithm.
Note that this is derived from Algorithm 4.3.1 by dropping lines (8) and (15) and by
replacing ū∗t,j with ūt,j .

4.3.3 The non Dynamic Case

In some domains it can be more appropriate to model decision problems using a non-
dynamic probabilistic model, such as a BN. Within the IDSS framework, this is possible
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Algorithm 4.3.2: collective expected utility(u,f ,G,d)

for t← T downto 1

do



for i← n downto 1

do



if i ∈ Le
if t = T{
Gi : ũt,i = uGi −→ SB

else Gi : ũt,i = ût,i −→ SB
else Gi : ũt,i =

∑
j∈Si

ūt,j −→ SB

if (i 6= 1)
then

{
Gi : ūt,i =

∫
Yi
ũt,ift,idyi(t) −→ GFi

else


Gi : ūt,i =

∫
Yi
ũt,ift,idyi(t) −→ SB

if t 6= 1

then
{

for each j ∈ Le
do

{
SB : ût−1,j −→ Gj

by simply adapting Algorithm 4.3.1 to the non-dynamic case. Algorithm 4.3.3, which
we call henceforth non-dynamic optimal EU algorithm, shows how this can be done.
Note that we adapt the notation to the non-dynamic case by dropping the dependence
on the time-varying index: therefore we are now using the standard notation of non-
dynamic domains of the previous chapters. Although some symbols in the algorithm are
new, these are self-explanatory and follow straightforwardly from the dynamic one. It
is easy to notice that this algorithm works, since the last time slice of a dynamic DDM
alone can be thought of as a non dynamic network. For this time slice, Theorem 4.3.2
guarantees the algorithm computes exact expected utility scores.

In the non dynamic case it is easier to highlight the relationships between our algorithms
and standard backward induction evaluation of IDs introduced in Proposition 2.5.10.
Consider the time slice DAG of Figure 4.2, which can be related to a non-dynamic
problem. The conditions imposed our structural assumptions guarantee that a standard
evaluation can be performed over each ancestral set of the DAG considering only the
utility function over that component. Furthermore, as stated by Theorem 4.1.13, the
evaluation of each of these ancestral components can be distributed to the different
panels since the expected utility factorises accordingly.
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Algorithm 4.3.3: non-dynamic collective optimal EU(u,f ,G)

for i← n downto 1

do



if i ∈ Le{
Gi : ũi = uGi −→ SB

else Gi : ũi =
∑
j∈Si

ū∗j −→ SB

SB : u∗i = maxDi ũi −→ Gi
if (i 6= 1)

then
{
Gi : ū∗i =

∫
Yi
u∗i fidyi −→ GFi

else
{
Gi : ū∗i =

∫
Yi
u∗i fidyi −→ SB

SB : u∗0 = maxD0 ū
∗
i

4.4 Examples

The previous section formally presented distributed propagation algorithms for IDSSs.
These work in general and for any network of ESs that respect the structural assumptions
of Section 4.1. We now illustrate how the different panels of experts can communicate
with each other through a suite of different IDSSs concerning the policies after an acci-
dental release of contaminants at a nuclear power plant.

4.4.1 A Simple Bayesian Network

Consider a simple example consisting of two dependent random variables, Y1 and Y2,
overseen by two different panels. The variable Y1 measures the number of people expe-
riencing negative symptoms after a nuclear accident, whilst Y2 estimates the financial
implications of that accident. Assume both variables to be continuous and defined
through the simple DAG linear regressions in equation (2.3.4). Therefore Y1 = θ01 + ε1

and Y2 = θ02 + θ12Y1 + ε2, where εi, i ∈ [2], is a random error with mean zero and
variance ψi. Further let E(θij | d) = aij , V(θ01 | d) = c01 and E(ψ1 | d) = b1, where
d denotes an available policy. This is a first example of a partially defined IDSS that
we study in depth in Chapter 5. This situation can be described by the simple BN in
Figure 4.5 where in this case we have also added the parameters and the hyperparam-
eters as vertices [this is often done in practice, as discussed in O’Hagan and Forster,
2004]. Note that the edge set of this DAG implies panel independence a priori since
there are no edges between {θ01, ψ1} and {θ02, θ12, ψ2}. Furthermore this DAG implies
local independence since there are no edges between any two parameters.
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Figure 4.5: Bayesian network describing the example in Section 4.4.1, including the
parameters and the hyperparameters in its vertex set.

Assume ri = yi, i ∈ [2], and U(r1, r2) = y1y2. Suppose also the decision space simply
consists of an initial decision space D(0) = {d1, d2}, where d1 denotes evacuation, whilst
d2 corresponds to the delivery of protective measures. For ease of notation, suppress the
dependence on decision d ∈ D(0).

Since in this setting the DAG has a unique ancestral component, we have that ũ2 = y1y2

and in order to compute ū2, panel G2 simply needs to compute the expected value of this
function. By sequentially applying the tower rule for expectations and the properties
of the expectation operator in Propositions 2.1.5 and 2.1.6 respectively, and letting θ
denote the overall parameter vector, panel G2 computes

E(Y1Y2) = E(E(Y1Y2 | θ, Y1)) = E((θ02 + θ12Y1)Y1) = E(θ02Y1 + θ12Y
2

1 )

= E(θ02)E(Y1) + E(θ12)E(Y 2
1 ) = ū2

The function ū2 coincides with ũ1 since Y2 is the only son of Y1. Therefore now panel
G1 can compute ū1 as

E(ũ1) = E(θ02)E(Y1) + E(θ12)E(Y 2
1 ) = E(θ02)E(E(Y1 | θ)) + E(θ12)(E(Y1)2 + V(Y1))

= E(θ02)E(θ01) + E(θ12)(E(E(Y1 | θ))2 + V(E(Y1 | θ)) + E(V(Y1 | θ))

= E(θ02)E(θ01) + E(θ12)(E(θ01)2 + V(θ01) + E(ψ1))

= a02a01 + a12(a2
01 + c01 + b1) (4.4.1)

The form of the expected utility in equation (4.4.1) informs the IDSS about the beliefs
panels need to deliver. Suppose panel G1 delivers the beliefs Ψy1 (d1) = Ψθ1(d1) = {a01 =
2, c01 = 4, b1 = 4} and Ψy1 (d2) = Ψθ1(d2) = {a01 = 2.5, c01 = 1, b1 = 2}, whilst panel
G2 delivers Ψy2 (d1) = Ψθ2(d1) = {a02 = 2.5, a12 = 2} and Ψy2 (d2) = Ψθ2(d2) = {a02 =
2, a12 = 2}.

A short note on the values assigned to this hyperparameters. The hyperparameter a01

corresponds to the expectation of the expected number of people with adverse symptoms,
whilst a02 represents the expectation of expected amount of financial cost. It is then
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reasonable to provide a higher value for a01 in the case of protective measures than
in the evacuation scenario. By the same logic, even though protective measures may
lead to more expenses for medical cures, the costs of an evacuation are incredibly high
and significantly greater than for the other available option. The hyperparameter a12

represents the strength of the causal relationship between the two variables. A priori,
G2 may not be very well informed about this quantity and decide to provide the same
value for the two decisions available. The expectation of the variance of the number of
people with negative symptoms is b1: in the case of delivering protective measures this
value is definitively lower, since it is easier to provide shelter to most of the population.
On the other hand during an evacuation, it may not be possible to help all the people
in danger and only a subset of them may be moved to safer areas: as a consequence,
the expectation of the variance of Y1 for decision d1 is higher. The last hyperparameter
c01 corresponds to the variance of the expectation of Y1 and, by the same argument, it
is higher in the evacuation case than in the protective measures one.

Note that the IDSS would have not been able to compute the expected utility of equation
(4.4.1) if panels had only delivered the mean estimates of the variables under their
jurisdiction. The quantities c01 and b1 represent levels of uncertainty concerning these
means. If we just plug in the expectations of relevant means and set equal to zero the
above measures of uncertainty, we obtain a spurious evaluation of an expected utility
score corresponding to

a01a02 + a12a
2
01.

In this case, plugging in the values provided by the panels, the expected utility for the
evacuation scenario is 13, whilst the expected value for delivering protective measures is
17.5: the optimal choice, when no variation in the estimates is allowed, is to evacuate the
population.1 Consider now the actual expected utility expression in equation (4.4.1),
including the second-order uncertainty. In this situation the expected utility of d1 is
29, whilst the expected utility under d2 is 23.5, from which it follows that the optimal
decision consists of delivering protective measures. The misjudgement of uncertainty
in this case has led to an indefensible decision, highlighting the need for a complete
uncertainty handling.

4.4.2 A Multiregression Dynamic Model

We now consider a very simple initial example of a dynamic framework, consisting of
a dynamic extension of the model of the previous section. Assume a decision centre
needs to decide whether to evacuate or not the population of a small village close to

1Note that in this case the expected utility needs to be minimised since the attributes of the example
represent negative consequences.
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a nuclear reactor which is contaminating the surrounding area. The course of action
can be decided at two time points only with associated binary decision spaces D(0) and
D(1), where D(t) = {d1(t), d2(t)}, t ∈ [1]0. Let d1(t) be the option of evacuation, whilst
d2(t) corresponds to do nothing, t ∈ [1]0. Suppose the system is asked to identify the
expected utility scores of a specific policy (i.e. no optimisation steps are required) and
suppress this dependence.

Assume also that the centre plans to observe the value of two continuous univariate
time series {Y1(t)}t∈[2] and {Y2(t)}t∈[2] only at time t = 1, i.e. after having committed
to a decision in D(0) but before having to choose an option in D(1). Assume further
that it is only considered relevant for the analysis the next value of these two series at
time t = 2, which is not observed. As before, at time t, Y1(t) measures the number of
people experiencing negative symptoms after a nuclear accident, whilst Yt(2) estimates
the financial costs of the accident.

Assume that during decision conferences the structural consensus of the IDSS has been
agreed by the collective to include an LMDM where Y 2

1 is the parent of Y 2
2 . Further

assume the collective agrees that the two series are the only attributes of the problem
and that the utility consensus includes a simple linear utility, which can be written as

u(y1(1), y1(2), y2(1), y2(2)) = u(y1(1)) + u(y1(2)) + u(y2(1)) + u(y2(2)). (4.4.2)

Assume also that the LMDM is specifically defined by the following equations:

• Y2(2) = θ12(2)Y1(2) + v2(2);

• θ12(2) = θ12(1) + w2(2);

• Y2(1) = θ12(1)Y1(1) + v2(1);

• Y1(2) = θ01(2) + v1(2);

• θ01(2) = θ01(1) + w1(2);

• Y1(1) = θ01(1) + v1(1).

Recall that in an LMDM the errors vi(t) and wi(2) are independent of each other with
mean zero and variance Vi(t) and Wi(2), respectively, for i, t ∈ [2]. Each panel individu-
ally assumed these variances to be unknown but has provided a prior mean estimate bi(t)
for Vi(t) and ri(2) for Wi(2). Assume further that the panels provided prior information
about the parameter vector at time t = 1, such that a01 and a12 are the mean estimates
for θ01(1) and θ12(1), respectively. The variances of θ01(1) and θ12(1) are elicited to
be c01 and c12 respectively. Assume further that each panel individually believes that
the marginal utilities under their jurisdiction are quadratic, so that u(yt(i)) = −yi(t)2,
t, i ∈ [2].
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Note that all the above panels’ specifications are delivered separately, as required by the
quantitative delegation consensus. Specifically, the form of the first three equations in
the list above is decided by panel G2, whilst the remaining ones are specified by G1.

Now that the IDSS has been fully defined for this example, we can show how the al-
gorithm works when the overarching structure is the LMDM. As in the previous case,
because of the polynomial form of the utility function, the algorithm consists of a se-
quential use of the tower rules of moments introduced in Proposition 2.1.6. Because the
associated DAG consists of one single ancestral component, we have that ũ2,2 coincides
with the rhs of equation (4.4.2). Then, letting u̇2,2 = u(y1(1)) + u(y1(2)) + u(y2(1)),
panel G2 computes a marginalisation by performing the following steps

E(ũ2,2) =u̇2,2 − E(Y2(2))2 − V(Y2(2))

=u̇2,2 − E(E(Y2(2)|·))2 − V(E(Y2(2)|·))− E(V(Y2(2)|·))

=u̇2,2 − E(θ12(2)Y1(2))2 − V(θ12(2)Y1(2))− E(V2(2))

=u̇2,2 − E(θ12(2)Y1(2))2 − V(E(θ12(2)Y1(2)|·))− E(V(θ12(2)Y1(2)|·))− b2(2)

=u̇2,2 − E(E(θ12(2)|·))2E(Y1(2))2 − V(Y1(2)θ12(1))− E(Y1(2)2W2(2))− b2(2)

=u̇2,2 − E(θ12(1))2E(Y1(2))2 − V(E(Y1(2)θ12(1)|·))− E(V(Y1(2)θ12(1)|·))

− E(Y1(2)2)E(W2(2))− b2(2)

=u̇2,2 − a2
12E(Y1(2))2 − V(Y1(2)a12)− E(Y1(2)2c12)

− r2(2)E(Y1(2)2)− b2(2)

=u̇2,2 − (a2
12 + c12 + r2(2))E(Y1(2)2)− b2(2) = ū2,2

This expression consists of non-random quantities, terms that are overseen by G1, or
elements associated to the previous time slice only. Therefore, G2: ū2,2 −→ G1. Note
that ũ2,1 coincides with ū2,2 since G2 oversees the only son of the vertex overseen by G1.
Letting u̇2,1 = u(y1(1)) + u(y2(1))− b2(2) and g2,1 = 1 + a2

12 + c12 + r2(2), panel G1:

E(ũ2,1) =u̇2,1 − g2,1(E(Y1(2)2 + V(Y1(2))

=u̇2,1 − g2,1(E(E(Y1(2)|·))2 + V(E(Y1(2)|·)) + E(V(Y1(2)|·)))

=u̇2,1 − g2,1(E(θ01(2))2 + V(θ01(2)) + E(V1(2)))

=u̇2,1 − g2,1(E(E(θ01(2)|·))2 + V(E(θ01(2)|·)) + E(V(θ01(2)|·)) + b1(2))

=u̇2,1 − g2,1(E(θ01(1))2 + V(θ01(1)) + E(W1(2)) + b1(2))

=u̇2,1 − g2,1(a2
01 + c01 + r1(2) + b1(2)) = ū2,1
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All the variables associated to the second time slice have now been marginalised and
the algorithm continues with the marginalisation of Y2(1). Letting u̇1,2 = u(y1(1)) −
g2,1(a2

01 + c01 + r1(2) + b1(2))− b2(2) we have that

E(ũ1,2) = u̇1,2 − E(E(Y2(1)|·))2 − V(E(Y2(1)|·))− E(V(Y2(1)|·))

= u̇1,2 − E(θ12(1)Y1(1))2 − V(E(θ12(1)Y1(1)|·))− E(V(θ12(1)Y1(1)|·))− b2(1)

= u̇1,2 − a2
12E(Y1(1))2 − a2

12V(Y1(1))− c12E(Y1(1)2)− b2(1)

= u̇1,2 − (a2
12 + c12)E(Y1(1)2)− b2(1) = ū1,2.

Now letting
u̇1,1 = −g2,1(a2

01 + c01 + r1(2) + b1(2))− b2(2)− b2(1)

and g1,1 = 1 + a2
12 + c12, G1:

E(ũ1,1) = u̇1,1 − g1,1(E(E(Y1(2)|·))2 + V(E(Y1(2)|·)) + E(V(Y1(2)|·)))

= u̇1,1 − g1,1(a2
01 + c01 + b1(2)) = ū1,1.

The algorithm is now completed and the overall expected utility, coinciding with ū1,1,
can be written as

ū1,1 = −ū(1)− ū(2)− b2(1)− b2(2),

where

ū(1) =(1 + a12(1)2 + c12(1))(a01(1)2 + c01(1) + b1(2)),

ū(2) =(1 + a12(1)2 + c12(1) + r2(2))(a01(1)2 + c01(1) + r1(2) + b1(2)).

Although straightforward, the recursions in the simplest possible dynamic example en-
abled us to clearly illustrate symbolically the algorithm in practice. In the following
sections we first consider a numerical example and then much more complex dynamic
models.

4.4.3 A Discrete Bayesian Network

Consider again a non dynamic domain with four random variables Yi, i ∈ [4], each
overseen by a different panel of experts and represented by the DAG in Figure 2.1 (the
non-dynamic variant of Figure 4.1). Suppose in this case that the variables are binary
taking values Yi = [1]0, i ∈ [4], and that these have the same meaning as in Example
2.3.8: specifically Y1 is an indicator of radioactive contamination in the environment,
Y2 is an indicator of radioactive intake in the population, Y3 is an indicator of adverse
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d0 d1 d2 d3 kdud(·)
1 0 0 0 0.15
0 1 0 1 0.2
0 1 1 1 0
0 0 1 1 0.15
0 0 1 0 0.2
0 0 0 1 0.25
0 0 0 0 0.3

Table 4.1: List of available policies and their utility scores.

d4 kd4ud4(d4)
1 0
0 0.05

y4 k4u4(y4)
1 0
0 0.1

y3 k3u3(y3)
1 0
0 0.45

y2 k2u2(y2)
1 0
0 0.1

Table 4.2: Specification of the other required utilities.

health effects and Y4 is an indicator of political disruption in the affected area. Suppose
the collective agreed on five binary decision spaces Di, i ∈ [4]0. The initial decision D0

has two options: evacuation or do nothing. The decision after observing the amount
of radiation, D1, consists of providing iodine tablets or not. These can be distributed
if evacuation was not chosen as initial decision. The space D2 consists of the option
of setting up a medical field support centre in the area. The centre can be built only
if the population was not evacuated. The decision space D3 is the same as D1 and
the former cannot be equal to not distributing iodine tablets if it was decided to do so
after observing the contamination of the area. Finally the decision space D4 consists of
two options: whether or not to proceed with a diplomatic action. Assume further that
the collective agrees on a set of extended conditional independences so that the overall
density of the IDSS can be written as

f(y | d) = f4(y4 | y1, d0)f3(y3 | y2, y1, d0)f2(y2 | y1, d0)f1(y1).

Note that in particular the distributions of Y2, Y3 and Y4 depend on their parents and
on D0 only.

As before, assume U = {2, 3, 4} and suppose the agreed utility function can be written
as

uG = k4u4(y4) + k3u3(y3) + k2u2(y2) + kd4ud4(d4) + kdud(d0, d1, d2, d3). (4.4.3)

Note that this utility factorisation is in the compatible class for the DAG associated
to this example. The first three terms on the rhs of equation (4.4.3) are provided by
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d0 y1 P(Y4 = 1|·) P(Y2 = 1|·)
1 1 0.85 0.7
1 0 0.7 0.9
0 1 0.5 0.1
0 0 0.2 0.2

y2 y1 d0 P(Y3 = 1|·)
1 1 1 0.7
1 0 1 0.7
0 1 1 0.5
0 0 1 0.2
1 1 0 0.9
1 0 0 0.8
0 1 0 0.6
0 0 0 0.3

y1 P(Y1 = y1)
1 0.8
0 0.2

Table 4.3: Probability specifications delivered by the panels.

d0 y1 ū4(d0, y1)
1 1 0.065
1 0 0.08
0 1 0.1
0 0 0.13

Table 4.4: Values of ū∗
4 after the marginalisation step of G4.

the corresponding panels, whilst we envisage the remaining ones to be agreed by the
collective.

Suppose panels and the collective delivered the utility specifications summarised in Ta-
bles 4.1 and 4.2. We see that Table 4.1 includes only the policies that respect the
constraints introduced above. Further assume that the panels delivered the probabilis-
tic beliefs summarised in Table 4.3.

In this setting the algorithm starts computing ũ3 = u3 +ud and ũ4 = u4 +ud4 . These are
sent to the SB that performs the optimisation step over these quantities. The result of
these optimisation depends on the available decisions only and is represented in Tables
4.1 and 4.2 by a bold expected utility score. These are the scores of the policies the SB
transmits to the appropriate panels in our algorithm. At this stage, following Algorithm
4.3.3, panels G4 and G3 perform marginalisation steps to compute respectively

ū∗4 =
∑
y4∈Y4

u∗4P(Y4 = y4 | Y1 = y1, d0), ū∗3 =
∑
y3∈Y3

u∗3P(Y3 = y3 | Y2 = y2, Y1 = y1, d0).

Table 4.4 shows the result of the marginalisation step performed by Panel G4 which is
then communicated to panel G1. Similarly, Table 4.5 shows ū∗3 which coincides with ũ2

since Y3 is the only son of Y2 in the associated DAG. Therefore the SB can now identify
an optimal policy for each combination of the parent variables and decisions: this again
is reported by a bold score on leftmost column of Table 4.5.
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d0 d1 d2 d3 y1 y2 ũ2(·)
1 0 0 0 1 1 0.465
0 1 0 1 1 1 0.605
0 1 1 1 1 1 0.405
0 0 1 0 1 1 0.605
0 0 0 0 1 1 0.705
1 0 0 0 0 1 0.465
0 1 0 1 0 1 0.56
0 1 1 1 0 1 0.36
0 0 1 0 0 1 0.56
0 0 0 0 0 1 0.66
1 0 0 0 1 0 0.475
0 1 0 1 1 0 0.57
0 1 1 1 1 0 0.37
0 0 1 0 1 0 0.57
0 0 0 0 1 0 0.67
1 0 0 0 0 0 0.34
0 1 0 1 0 0 0.435
0 1 1 1 0 0 0.235
0 0 1 0 0 0 0.435
0 0 0 0 0 0 0.535

Table 4.5: Value of the functions ũ2 and ū∗
3 computed respectively by G2 and G3.

d0 d1 d2 d3 d4 y1 ũ1(·)
1 0 0 0 0 1 0.533
0 1 0 0 0 1 0.7015
0 0 0 0 0 1 0.8015
1 0 0 0 0 0 0.4325
0 1 0 0 0 0 0.59
0 0 0 0 0 0 0.69

Table 4.6: Values of ũ1 computed by summing ū∗
4 and ū∗

2.

Following Algorithm 4.3.3, panel G2 performs a marginalisation step and communicates
the result to G1, which can then compute ũ1 by summing ū∗2 and ū∗4 computed respec-
tively by G2 and G4. The SB then performs the optimisation step which is summarised
in Table 4.6 by the bold scores: there are at this stage four potential optimal policies,
one for each combination of y1 and d0.

The final two steps of the algorithm consist of a marginalisation over Y1, performed by
panel G1, and the final optimisation step over the initial decision space D0, performed
by the SB. Given the beliefs delivered by G1, the IDSS derives the expected utility scores
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for the two only remaining policies as:

ū(d0 = 1, d1 = 0, d2 = 0, d3 = 0, d4 = 0) = 0.4526,

ū(d0 = 0, d1 = 0, d2 = 0, d3 = 0, d4 = 0) = 0.7123.

Thus, the IDSS, following Algorithm 4.3.3, would suggest that the optimal policy consists
of not intervening at any point.

In Section 5.6.1 we briefly demonstrate that evaluations in discrete domains like this one
can be performed symbolically and written as a simple arithmetic expression.

4.4.4 Gaussian Recursions

We consider now a dynamic variant of the previous example, where the processes de-
picted by the DAG in Figure 4.1 have the same meaning as before. As discussed in
Chapter 1, many applications we have in mind have a geographical structure, in the
sense that many of the values of the required variables are recorded at several locations
in an area of interest. This is for example the case in a nuclear emergency, where levels of
contamination are collected at many different locations in the surroundings of a power
plant. Thus, the processes IDSSs usually deal with are high dimensional. However,
the associated utilities are usually low dimensional and can consequently be evaluated
transparently. Note that if the impacts of the countermeasures need to be considered
at a regional level, it is straightforward to implement these into an IDSS framework.
Panels then simply need to provide different scores for the different regions of interest.

Because for real problems the number of equations required to define the problem scales
up to an extent where the outworkings of the algorithm are obscured, the example
below illustrates how a geographic component can be included into the analysis in the
simplest possible case. However in much larger scenarios the calculations are still very
feasible and just as straightforward to calculate as in this example because everything
is distributed and in closed form. Furthermore, each of the unknown quantities are in
practice numbers, rather than algebraic entities, provided by the component DSS and
so quick to integrate within the composite system.

For the purpose of this example, suppose the IDSS needs to identify the expected utility
score associated to a specific policy and suppress this dependence. Further suppose each
vector Yi(t) = (Y 1

i (t), . . . , Y r
i (t))T, i ∈ [4], t ∈ [T ], is such that Y l

i (t) is a univariate
continuous random variable observed at location l ∈ [r]. The locations are the same for
all the time series and do not change through time. To keep this illustration simple we
consider here a simple LMDM over a finite time horizon T equal to 2. Specifically, for
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i ∈ [4]1, t ∈ [2] and l ∈ [r], we let

Y l
i (t) =

∑
j∈Πi

θlji(t)Y l
j (t) + vli(t), and θlji(2) = θlji(1) + wlji(2). (4.4.4)

Equation (4.4.4) implicitly makes the simplifying assumption that the processes at differ-
ent locations are independent of each other. We are further assuming that the intercepts
are equal to zero and that

Y l
1 (t) = θl11(t) + vl1(t), θl11(2) = θl11(1) + wl11(2). (4.4.5)

The errors vli(t), wlji(2) are assumed by the collective to be mutually independent of
each other following a Gaussian distribution with mean zero and known variance V l

i (t)
and W l

ji(2) respectively. Assume further that each panel has provided prior information
about the parameter vector at time t = 1, such that alji is the mean prior estimate of
θlji(1), whilst its variance is elicited to be clji.

Now assume that the collective has agreed on a linear utility factorisation over the
attributes and that each panel has individually agreed to model every individual con-
ditional utility function as a cubic. Let rli(t) = yli(t) and assume that decisions are not
arguments of the utility function. We let

uG(·) =
∑
i∈[4]1

∑
t∈[2]

∑
l∈[r]
−γi(t)yli(t)3, (4.4.6)

where γi(t) ∈ R>0. It is easy to deduce by comparing equations (4.1.3) and (4.4.6) that
this factorisation is a member of the class of compatible utilities. Furthermore the utility
function, for each attribute of the decision problem, is assumed to be the same for the
r geographical locations and that the overall score of an attribute is equal to the sum
of the scores of each region for that attribute. The cubic utility function is a member
of the family of constant relative risk aversion utilities, used in the literature to model
risk aversion [see Wakker, 2008].

Now that the IDSS has been fully defined for this example, we can show how the al-
gorithm works symbolically when the overarching structure is the LMDM. Recall that
the third moment of a Gaussian distribution with mean µ and variance ψ is equal to
µ3+3µψ. Since this is a function of the first two moments (as for any high-order moment
of a Gaussian, see Appendix C.2.1), the algorithm again consists of a sequential use of
the tower property for the first two conditional moments. This starts with panels G3
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h3(1) = −
∑
l∈[r]

(∑3
i=2 γi(1)yli(1)3 + 3γ3(2)E

(
θl13(2)2θl23(2)θl12(2)Y l

1 (2)3))
h3(2) = −γ3(2)

∑
l∈[r]

(
3V l

3 (2)E
(
(θl13(2) + θl23(2)θl12(2))Y l

1 (2)
)

+ E
(
(θl13(2)Y l

1 (2))3))
h3(3) = −

∑
l∈[r]

(
γ2(2) + γ3(2)E

(
θl23(2)3))E(θl12(2)3Y l

1 (2)3)
h3(4) = −

∑
l∈[r]

(
γ2(2) + γ3(2)E

(
θl23(2)3))3V l

2 (2)E
(
θl12(2)Y l

1 (2)
)

h3(5) = −3γ3(2)
∑
l∈[r] E

(
θl13(2)θl23(2)2Y l

1 (2)
)(
E
(
θl12(2)2Y l

1 (2)2)+ V
(
θl12(2)Y l

1 (2)
))

h3(6) = −3γ3(2)
∑
l∈[r] E

(
θl13(2)θl23(2)2Y l

1 (2)
)
V l

2 (2)

Table 4.7: Definition of the terms h2(i) in ū2,2.

and G4 computing, respectively, ū2,3 and ū2,4. Specifically, we have that

ū2,4 = −
∑
l∈[r]

(
γ4(1)yl4(1)3 + γ4(2)

(
E(θl14(2)3Y l

1 (2)3) + 3V l
4 (2)E(θl14(2)Y l

1 (2))
))
, (4.4.7)

ū2,3 = −
∑
l∈[r]

(
γ3(1)yl3(1)3 + γ2(1)yl2(1)3 + γ2(2)yl2(2)3 + γ3(2)h3

)
, (4.4.8)

where h3 = E(E(Y l
3 (2)3 | ·)) + 3V l

3 (2)E(E(Y l
3 (2) | ·)) and

E(Y l
3 (2) | ·) = θl13(2)Y l

1 (2) + θl23(2)Y l
2 (2), (4.4.9)

E(Y l
3 (2)3 | ·) =

∑
i∈[2]

(θli3(2)Y l
i (2))3 + 3

∑
j+k=3
j 6=k∈Z≥1

(θlj3(2)Y l
j (2))2θlk3(2)Y l

k(2). (4.4.10)

Now, equations (4.4.8)-(4.4.10) are functions of Y l
2 (2) and Y l

2 (1) only and can therefore
−→ G2. Then panel G2 : ū2,2 which can be written as the sum of the terms h2(i), i ∈ [6],
defined in Table 4.7.

All the terms in Table 4.7, as well as the rhs of equation (4.4.7), are a function of Y l
1 (2)

only and can therefore be sent to panel G1, which sums these two incoming messages.
Panel G1 then applies sequentially the tower rules to compute ū2,1. This corresponds
to the sum of the rhs of (4.4.7) and the terms in Table 4.7 where Y l

1 (2) and Y l
1 (2)3 are

substituted with θl11(2) and θl11(2)3 + 3θl11(2)V1(2) respectively.

The algorithm then considers the first time slice. Because of the very regular structure
of the LMDM the expressions resulting from the first time slice are identical to the ones
at the second time point. Since in an LMDM the parameters are all independent of each
other, the expected utility function can be deduced by simply computing the expectation
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of each of these. Specifically, letting for i ∈ [2] and j ∈ [4]1

kl11(2) = E(θl11(2)3) = ((al11)3 + 3al11(cl11 + V l
1 (2) +W l

11(2))),

kl11(1) = E(θl11(1)3) = ((al11)3 + 3al11(cl11 + V l
1 (1))),

klij(1) = E(θlij(1)3) = ((alij)3 + 3alijclij),

klij(2) = E(θlij(2)3) = ((alij)3 + 3alij(clij +W l
ij(2))),

dlij(2) = E(θlij(2)2) = (alij)2 + clij +W l
ij(2),

dlij(1) = E(θlij(1)2) = (alij)2 + clij ,

we can write the expected utility function as

ū(d) =
∑
l∈[r]

∑
t∈[2]

 ∑
i∈[4]1

γi(t)ūli(t) + γ3(t)(m̄l
3(t) + n̄l3(t) + kl23(t)ū2(t))

 (4.4.11)

where

ūli(1) = kl1i(1)kl11(1) + 3V l
i (1)al1ial11, n̄l3(t) = 3al13d

l
23(t)(dl12(t)kl11(t) + V l

2 (t)al11),

ūli(2) = kl1i(2)kl11(2) + 3V l
i (2)al1ial11, m̄l

3(t) = 3V l
3 (t)al23a

l
12(al11 + kl11(t)dl13(t)).

There are a few important points to notice here:

• because of the form of the utility factorisation in equation (4.4.6), the expected
utility consists of the sum of the expected scores at each location l and of the sum,
at each of these locations, of the scores associated to the two time slices. This
result is a direct consequence of the independence of the processes at different
locations. However, it would have been straightforward to embellish the example
to allow the different processes to be dependent on one another, by defining a
hierarchical model over θ(t)T = (θi(t)T)i∈[4], where θi(t) is the vector including
the parameters θji(t) in equations (4.4.4) and (4.4.5), i ∈ [4];

• the expected utility in equation (4.4.11) is a polynomial, where the unknown quan-
tities are the individual judgements delivered by the panels. This polynomial has
for this example degree six and it is not a simple multilinear combination of the
unknowns. Note that knowing the shape of the expected utility allows potential
decision centres to understand how different factors influence the decision making
process: we focus on these issues in Chapter 5;

• the IDSS would have not been able to compute the expected utility of equation
(4.4.11) if the panels had only delivered the mean estimates of the variables under
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their jurisdiction. The quantities V l
i (t), W l

ij(2) and clij represent levels of uncer-
tainty concerning these mean estimates. If we just plug in the expectations of
relevant means and set equal to zero the above measures of uncertainty we obtain
a spurious evaluation of an expected utility score corresponding to

ū(d) =
∑
l∈[r]

∑
t∈[2]

 ∑
i∈[4]1

γi(t)(al11)3(al1i)3 + γt3(al11)3(al23)2(al12)2(3al13 + al23a
l
12)

 .
(4.4.12)

Equation (4.4.12) is way different from (4.4.11). A DSS that provides expected
utility scores from equation (4.4.12) could thus lead decision centres to behave as
non expected utility maximisers and put them in danger of adopting indefensible
countermeasures.

4.4.5 A Network of Dynamic Models

The last example we present in this chapter consists of a sequence of generic models,
whose input/output relationships respect the DAG in Figure 2.11 consisting of a Markov
chain structure. We assume again the IDSS needs to identify the expected utility score
associated to a specific policy, therefore skipping the optimisation steps, and suppress
the dependence on the decisions.

As before, assume the variables Yi(t), t ∈ [T ], i ∈ [4], are observed at each time point at
r different locations in space and let Yi(t) = (Y 1

i (t), . . . , Y r
i (t))T, where Y l

i (t) denotes
the i-th variable at time t and location l. Further assume that the compatible utility
factorisation is linear over time, space and nodes of the graph, i.e.

uG =
∑
i∈[4]

∑
t∈[T ]

∑
l∈[r]

ktilutil(yli(t)),

Suppose further each panel individually agreed to model its marginal utility using a
simple quadratic function of the form

util = −γi(t)yli(t)2.

Assume panel G1 agreed to use a complex sampling computational algorithm delivering
as output the first two moments of the distribution of Y1(t), t ∈ [T ]. Let a1(t) and
C1(t) the mean and covariance matrix respectively of Y1(t) deduced from the agreed
algorithm, with cp,s1 (t) the entry in position (p, s) of C1(t). Let also al1(t) and cl1(t) be
the mean and the variance of Y l

1 (t) and c1(t) = (c1
1(t), . . . , cr1(t))T.
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Panel G2 agrees to model Y2(t) according to r distinct MDMs defined by the following
observation equations

Y l
2 (t) = Y1(t)Tθl2(t) + vl2(t), vl2(t) ∼ (0, V l

2 (t)),

where θl2(t) is a r-dimensional vector of unknown parameters and E(V l
2 (t)) = bl2(t). The

system equations are defined as

θl2(t) = Gl2(t)θl2(t−1) +wl
2(t), wl

2(t) ∼ (0,W l
2(t)),

where Gl2(t) is a r× r matrix having known entries and W l
2(t) is a diagonal matrix with

known entries wi,j2,l in position (i, j). Assume that is given a prior distribution with mean
al2 and covariance C l2 to θl2(1), where C l2 is a diagonal matrix with ci,j2,l in entry (i, j).

Panel G3 agreed to use a simple LMDM, defined, for l ∈ [r], by the following observation
equations

Y l
3 (t) = θl23(t)Y l

2 (t) + vl3(t),

and system equations
θl23(t) = θl23(t−1) + wl23(t).

The errors vlt(3) and wlt(2, 3) are assumed by G3 to be mutually independent with mean
zero and variance V l

3 (t) and W l
23(t) respectively. These variances are assumed to be

unknown, but the panel provides a prior mean bl3(t) for V l
3 (t) and rl23(t) for W l

23(t).
Prior means and variances are delivered also for the parameters θl23(1) and denoted as
al23 and cl23.

Lastly panel G4 agreed to model the variables under their jurisdiction using a complex
deterministic simulator for each region and to introduce uncertainty by defining a non-
dynamic emulator over its outputs (see Section 2.3.5). The inputs of each simulator are
yl3(t) together with other known constants, whilst its output is yl4(t). The emulator is
then formally defined as

Y l
4 (t) = m(Y l

3 (t)) + e(Y l
3 (t)),

where m(Y l
3 (t)) = θl04 + θl34Y

l
3 (t) and e(Y l

3 (t)) is a zero mean Gaussian process with
covariance function cl(·, ·) = W l

4r
l(Y l

3 (t) − Y l
3 (t)′), where rl is a stationary correlation

function such that rl(0) = 1 For the purpose of this example, it is actually not necessary
to specify such correlation function and we envisage the panel to have agreed on one
such function [see e.g. Kennedy and O’Hagan, 2001]. The panel further agrees to deliver
the following beliefs:

E(θl04) = al04, E(θl34) = al34, V(θl04) = cl04, V(θl34) = cl34, E(W l
4) = rl4.
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ūt,1

hh // Yt(2)
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Figure 4.6: Description of the propagation algorithm over the directed acyclic graph
of Figure 2.11.

We now show how the algorithm works symbolically under the overarching structure
defined above. Its steps are summarised in Figure 4.6 where the arrows have the same
meaning as in Example 4.3.1. For conciseness here we assume that the time horizon
is equal to two and we start illustrating the algorithm from panel G4 overseeing Y2(4).
Note that by construction ũ2,4 = uG . Letting u̇2,4 = uG −

∑
l∈[r] k24lu24l, panel G4

computes ū2,4, as

ū2,4 = u̇2,4 −
∑
l∈[r]

k24lγ
l
4(2)E(Y l

4 (2)2)

= u̇2,4 −
∑
l∈[r]

k24lγ
l
4(2)(E(Y l

4 (2))2 + V(Y l
4 (2)))

= u̇2,4 −
∑
l∈[r]

γl4(2)k24l
[
τ l4 + 2al04a

l
34E(Y l

3 (2)) + τ l34E(Y l
3 (2)2)

]
,

where τ l04 = al04
2 + rl4 + cl04 and τ l34 = al34

2 + cl34.

This function is then −→ G3. Note that because of the topology of the DAG, ũ2,3 = ū2,4.
Let hl2,3 = −2γl4(2)k24la

l
04a

l
34 and

u̇2,3 =
∑
i∈[4]

∑
l∈[r]

k1ilu1il + k21lu21l + k22lu22l − γl4(2)k24lτ
l
4),

gl2,3 = −(γl4(2)k24lτ
l
34 + k23lγ

l
3(2)).

Then, ū2,3 is equal to

ū2,3 = u̇2,3 −
∑
l∈[r]

gl2,3E(Y l
3 (2)2) + hl2,3E(Y l

3 (2)),

where E(Y l
3 (2)) = al23E(Y l

2 (2)) and E(Y l
3 (2)2) = (al23

2 + rl23(2) + cl23)E(Y l
2 (2)2) + bl3(2).

Rearranging and noting that ũ2,2 = ū2,3, we have that

ũ2,2 = u̇2,2 −
∑
l∈[r]

[
[gl2,3(al23

2 + rl23(2) + cl23) + k22lγ
l
2(2)]E(Y l

2 (2)2) + hl2,3a
l
23E(Y l

2 (2))
]
,

(4.4.13)
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where
u̇2,2 =

∑
i∈[4]

∑
l∈[r]

k1ilu1il + k21lu21l − γl4(2)k24lτ
l
4 − gl2,3bl3(2). (4.4.14)

At this stage panel G2 performs a marginalisation step computing

E(Y l
2 (2)) = E(Y1(2)T)Gl2(2)al2, (4.4.15)

and
E(Y l

2 (2)2) = E(Y l
2 (2))2 + V(Y l

2 (2)), (4.4.16)

where
E(Y l

2 (2))2 = al2
T
Gl2(2)TE(Y1(2))E(Y1(2)T)Gl2(2)al2 (4.4.17)

and

V(Y l
2 (2)) = V(Y1(2)Tθl2(2)) + E(V l

2 (2))

= V(Y1(t)TGl2(2)θl2(1)) + E(Y T
1 W

l
2(2)Y1(t)) + bl2(2)

= V(Y1(t)TGl2(2)al2) + E(Y1(2)TGl2(2)C l2Gl2(2)TY1(t))

+ E(Y T
1 W

l
2(2)Y1(t)) + bl2(2)

= al2
T
Gl2(2)TV(Y1(2))Gl2(2)al2
+ E(Y1(2)T(Gl2(2)C l2Gl2(2)T +W l

2(2))Y1(2)) + bl2(2). (4.4.18)

Plugging in equations (4.4.14)-(4.4.18) into (4.4.13) panel G2 computes ū2,2. This func-
tion is then sent to G1. Recall that E(Y1(2)) = a1(2), V(Y1(2)) = C1(2) and note
that

E(Y1(2)T(Gl2(2)C l2Gl2(2)T +W l
2(2))Y1(2)) =

∑
i,j∈[r]

(Ai,j + wi,j2,l)(a
i
1(2)aj1(2) + ci,j1 (2)).

By substituting these values into ū2,2, panel G1 computes ū2,1.

At this stage the algorithm has completed the second time slice of the IDSS. The steps
for the first time slice almost identically mirror the one illustrated above. These can
be deduced by changing the time indices and deleting the parameters rl23(2), Gl2(2) and
W l

2(2), which model the updating of the parameters through time. The overall expected
utility can then be written as

ū(d) =
∑
t∈[2]

∑
l∈[r]

γ̄1(t)τ l1(t) + ūl2(t)(γ̄l2(t) + ūl3(t)(γ̄l3(t) + τ l34γ̄
l
4(t))) + τ lmix(t),
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where γ̄li(t) = ktilγ
l
i(t), τ l1(t) = al1(t)2 +cl1(t), ūl3(1) = cl23 +(al23)2, ūl3(2) = ūl3(1)+rl23(2)

and

τ lmix(2) = bl3(2)γ̄l3(2) + γ̄l4(2)τ l4 + 2al04a
l
34a

l
23a1(2)TGl2(2)al2,

τ lmix(1) = bl3(1)γ̄l3(1) + γ̄l4(1)τ l4 + 2al04a
l
34a

l
23a1(1)Tal2,

ūl2(2) = al2
T
Gl2(2)T(C1(2) + a1(2)a1(2)T)Gl2(2)al2 + bl2(2)

+
∑
i,j∈[r]

(Ai,j + wi,j2,l)(a
i
1(2)aj1(2) + ci,j1 (2))

ūl2(1) = al2
T(C1(2) + a1(2)a1(2)T)al2 + bl2(1) +

∑
i,j∈[r]

ci,j2,l(a
i
1(1)aj1(1) + si,j1 (1)),

with A = Gl2(2)C l2Gl2(2)T, such that Ai,j is its entry in position (i, j).

4.5 Conclusions

Having formally defined in the previous chapter the IDSSs and discussed the conditions
for sound group inferences, we introduced here new distributed propagation algorithms
for the exact computation of an IDSS expected utility scores. These work for a novel
asymmetric dynamic decision problem class, which embeds partial factorisations of util-
ity functions. These types of factorisations have not been considered in expected utility
computations before.

As shown by the above examples, all calculations are straightforward and scale up,
albeit with a large number of moments or probabilities to be computed, stored and
transmitted between panels. However, these quantities can be provided by an IDSS. So
the large number of computations necessary for coherently evaluating different policies
are actually trivial ones and operationally computable in real time. We note that the
algorithms we define in these multi-ESs are closely related to the ones already cited for
the propagation of probabilities and expected utilities in graphical structures, which have
now been successfully implemented in many large applications. So we can be confident
that our methods remain feasible for current and much larger applications.



Chapter 5

The Algebra of Integrating
Partial Belief Systems

The examples of Section 4.4 showed that the IDSS’s expected utilities are often polyno-
mial functions whose indeterminates are individually delivered by different panels. By
requesting only this information, the implementation of an IDSS can become orders of
magnitude more manageable. This is because panels just need to communicate a few
summaries from their sample: a trivial and fast task to perform.

Therefore, for the sole purpose of decision support, the full inferential conditions guar-
anteeing a sound and distributed analysis of Chapter 3 are actually too strict. These can
be relaxed whilst retaining the coherence of the IDSS. Taking an algebraic approach, in
this chapter we develop a methodology that ensures coherence in these types of partially
defined systems, meaning systems where panels only deliver certain selected summaries.
Following Leonelli et al. [2015b], we first define the new notion of algebraic expected util-
ity of an IDSS. This definition enables us to impose new conditions tailored to the needs
of an IDSS concerning the uncorrelatedness of certain polynomials. These conditions,
often weaker than panel independence, can guarantee an IDSS is adequate. We discuss
how and when it is possible to achieve adequacy in a number of typical frameworks. Im-
portantly, this algebraic approach enables us to extend results about the computation
of moments of decomposable functions in DAGs [Cowell et al., 1999, Nilsson, 2001] for
a particular subclass of BN models.

Although this is not often recognised in the literature, algebraic approaches are inti-
mately linked to symbolic ones, where probabilities are treated as indeterminates in a
computer algebra system, thus not requiring an exact numerical specification. Symbolic
inference is often used in sensitivity analysis to identify the probabilities a DM needs
to be particularly precise about in her specification, as these might drastically change

143
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the ranking of the available policies [French and West, 2003]. We symbolically define
two important instances of models that can be part of an IDSS structural consensus,
namely IDs and staged trees. We develop new symbolic inferential techniques for these
two models, extending current literature to both decision and asymmetric problems. An
extensive discussion of these results can be found in Leonelli et al. [2015a] and Görgen
et al. [2015].

The structure of the chapter is as follows. In Section 5.1 we review the main devel-
opments in symbolic and algebraic inferential methods. In Section 5.2 we define alge-
braically the expected utility of an IDSS. Section 5.3 introduces polynomial conditions
the panels’ summaries need to entertain and we then show in Section 5.4 how these are
able to guarantee adequacy and distributivity. Section 5.5 presents a variety of examples
of these methods. In Section 5.6 we review recent symbolic methods for two particular
integrating structures: IDs and staged trees. We conclude with a discussion.

5.1 A Brief Overview of Symbolic and Algebraic Methods
in Statistics

As mentioned in the introduction, symbolic and algebraic methods for statistical in-
ference have been developed independently by two different community of researchers.
Symbolic ones have been the focus of mostly computer scientists, whilst algebraic ones
of mathematicians and statisticians. However, in both cases, the probabilities associated
to a statistical model are described as polynomials, whose structure is then exploited to
study the inferential properties of such models in a variety of applications.

Symbolic methods focused mostly on graphical models and specifically on BNs, both
discrete [Castillo et al., 1995, 1997a] and Gaussian [Castillo et al., 1997b]. Probabilities
and moments associated to vertices are thought of as indeterminates of a computer al-
gebra system (such as Maple or Matlab), where the model’s probabilities can then be
seen as polynomials with such indeterminates. Castillo et al. [1996] and Castillo and
Kjærulff [2003] developed and implemented algorithms for the computation of polyno-
mials associated to the joint probabilities of a BN model. In these works the bounds the
probabilities of the vertices of the network have to respect were also identified, and these
can then be used in sensitivity analyses. The fundamental idea behind this approach
lies in the fact that once the qualitative structure of the model is constructed, numer-
ical specifications of the involved probabilities do not need to be delivered a priori for
the algorithms to run. Furthermore the above mentioned bounds inform a DM about
probability values that cannot be delivered, thus simplifying the elicitation process.
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However, the symbolic inferential algorithms of Castillo [1997] had several drawbacks.
Most importantly these computed every possible monomial deriving from the symbolic
definition of the model, only later dropping those associated to non compatible instantia-
tions. This required the computation of the Cartesian product of the sets of probabilities
associated to the vertices of the BN, which can become infeasible as the size of the net-
work grows. In Darwiche [2003] a new symbolic inferential algorithm speeded up the
computation of the probability polynomials, by converting the underlying BN into an
Arithmetic Circuit (AC). This circuit can then be evaluated through fast routines to
output the required polynomials. Importantly, Darwiche [2003] also showed that a large
number of probabilistic queries can be answered by computing certain derivatives of the
probability polynomials, which are then easier to handle because the associated AC has
a smaller dimension. Such methods were subsequently extended to DBNs [Brandherm
and Jameson, 2004].

Beside the possibility of not having to elicit probabilities before any inference takes place,
another great advantage of symbolic approaches is that these methods straightforwardly
support various sensitivity analyses. In particular users can simply plug-in different
numbers into the probability indeterminates and observe how these change the inferential
results on a set of goal variables. Alternatively, much more sophisticated sensitivity
techniques have now been implemented [Chan and Darwiche, 2001, 2004].

Although the computing capability of modern computers is constantly growing, it has
been possible to apply symbolic approaches only in small/medium sized applications.
This is because each probability specification is treated as an unknown variable in a
computer system. This requires much more memory space than a single number. Fur-
thermore, as shown by Cooper [1990], the number of monomials in BN models grows
exponentially with the number of vertices, often making the computation of such polyno-
mials prohibitive. However, we note here that the technology of IDSSs allows us to apply
symbolic methods to much larger models. This is because we can define symbolically
only the outputs of each component DSS, which is the only relevant information an IDSS
needs to process. At the same time, this symbolic definition leads straightforwardly to
the use of sensitivity analyses for the outputs of IDSSs, which can be extremely useful
for building consensus among the panel members.

The alternative stream of research using polynomial techniques in statistics is usually
referred to as algebraic statistics. Among others, this uses techniques from algebraic
geometry and computational commutative algebra to gain insights into the structure
of certain statistical models [Riccomagno, 2009]. The first developments of algebraic
statistics were on the use of both Gröbner bases in Markov chain sampling algorithms
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[Diaconis and Sturmfels, 1998] and commutative algebraic techniques in the design and
analysis of experiments [Pistone and Wynn, 1996].

Subsequently, algebraic statistics also started to be applied to more general statistical
models. Certain statistical models have been identified with certain algebraic varieties
[Pistone et al., 2002]. Big part of the research in this area then focused on graphical
models, as for example BNs [Garcia et al., 2005, Sullivant, 2008], MNs [Geiger et al.,
2006] and trees [Settimi and Smith, 2000]. The number of applications of algebraic
methods in statistics is now enormous [see e.g. the monographs, Drton et al., 2009,
Gibilisco et al., 2010, Pachter and Sturmfels, 2005, Pistone et al., 2002].

To our knowledge, the methods we develop in the following sections are the first appli-
cation of symbolic and algebraic techniques to Bayesian decision analysis.

5.2 An Algebraic Description of Integrating Systems

The computation of the expected utilities in the examples of Section 4.4 showed the
difficulty of identifying the beliefs that need to be delivered to the IDSS by panels. The
situation becomes even more complicated when the utility consensus includes multilin-
ear or multiplicative utility factorisations introduced in Definitions 2.4.12 and 2.4.14
respectively (unless all panels can simply define independent marginal models for the
variables under their jurisdiction).

Approaching the problem from an algebraic viewpoint allows us to identify the necessary
panels’ summaries and the required assumptions for adequacy. In order to do this we
first need to define the expected utility polynomials. Recall that there are m panels
of experts {Gi : i ∈ [m]}, [m] = {1, . . . ,m}, each delivering beliefs about θi, i ∈ [m],
parametrising the density of Yi | d, for a decision d ∈ D. The conditional expected
utility is ū(d | θ), whilst ū(d) is the expected utility.

Definition 5.2.1. The conditional expected utility ū(d | θ) of an IDSS is called alge-
braic if, for each d ∈ D and θ ∈ Θ, ū(d | θ) is a square-free polynomial

ū(d | θ) = fd (λ1(θ1,d), · · · ,λm(θm,d))

in functions λi(θi,d) of the parameters θi of panel Gi, i ∈ [m].

We now explicitly define the algebraic conditional expected utilities fd. Let λi(θi,d) =
(λji(θi,d))T

j∈[si], for an si ∈ Z≥1, and b ∈ B =×i∈[m]Bi , where Bi = [si]0 = [si] ∪ {0},
i ∈ [m]. For a given b, let i ∈ Bj be its j-th entry and let b(j, i) = 0 if j 6= i, b(j, i) = 1
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if j = i and b(0, i) = 1, for i ∈ [m] and j ∈ [si]. Then, if we define λ0i(θi,d) = 1, for
every θi ∈ Θi, d ∈ D and i ∈ [m], we can write

fd (λ1(θ1,d), . . . ,λm(θm,d)) =
∑
b∈B

kb,dλb(θ,d), (5.2.1)

where
λb(θ,d) =

∏
i∈[m]

∏
j∈[si]0

λji(θi,d)b(j,i),

is a monomial, having at most one term not unity delivered by each panel. So in
particular, fd is a square-free polynomial. For a given b ∈ B, let

µji(d) = E
(
λji(θi,d)b(j,i)

)
.

For the distributivity of the IDSS we need the following property.

Definition 5.2.2. Call an IDSS score separable if, in the notation above, the collective
agrees that, for all decisions d ∈ D and all indices b ∈ B such that kb,d 6= 0,

E (λb(θ,d)) =
∏
i∈[m]

∏
j∈[si]0

µji(d). (5.2.2)

Let, for every d ∈ D, µi(d) = (µji(d))T
j∈[si]. A consequence of the definitions above is

the following.

Lemma 5.2.3. Suppose panel Gi delivers its vectors of expectations µi(d), i ∈ [m],
d ∈ D, to the SB. Then, under the collective assumptions of an algebraic conditional
expected utility, if the IDSS is score separable then it is adequate.

Proof. The definition of adequacy in Definition 3.2.6 means in this framework that the
expected utility ū(d) is a function of µji(d) and kb,d only, for i ∈ [m], j ∈ [si]0, b ∈ B
and d ∈ D. Now note that

ū(d) = E (fd (λ1(θ1,d), . . . ,λm(θm,d))) =
∑
b∈B

kb,dE (λb(θ,d)) .

The definition of score separability in equation (5.2.2) then implies that

ū(d) =
∑
b∈B

kb,d
∏
i∈[m]

∏
j∈[si]0

µji(d),

from which the lemma follows.
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We can therefore deduce from Lemma 5.2.3 that adequacy is guaranteed whenever score
separability holds, under the assumption of an algebraic conditional expected utility. In
the following section we introduce conditions that ensure this type of separability. We
then identify classes of models that give rise to algebraic conditional expected utilities.

5.3 Moment and Partial Independence

Equation (5.2.2) together with Lemma 5.2.3 shows that adequacy is guaranteed whenever
the expectation of certain functions of the panels’ parameters separate appropriately. We
introduce now a new type of independence called partial independence.

Definition 5.3.1. Let fd(λ1(θ1,d), . . . ,λm(θm,d)) be the algebraic conditional expected
utility of an IDSS. We say that an IDSS is partially independent if

E(fd(λ1(θ1,d), . . . ,λm(θm,d))) = fd(E(λ1(θ1,d)), . . . ,E(λm(θm,d))).

This condition requires the expectation of the product of certain functions of the parame-
ters overseen by different panels to be equal to the product of the individual expectations.

Often the λji, i ∈ [m], j ∈ [si], are monomial functions of the panels’ parameters. It is
therefore helpful to introduce the following independence condition specific for monomial
functions. Let <lex denote a lexicographic order (see Appendix D).

Definition 5.3.2. Let θ = (θi)T
i∈[n] ∈ Rn be a parameter vector and b = (bi)T

i∈[n] ∈ Zn≥0.
We say that θ entertains moment independence of order b if, ∀ b′ = (b′i)

T
i∈[n] ≤lex b,

E
(
θb
′) =

∏
i∈[n]

E
(
θ
b′i
i

)
.

It is generally well known that standard probabilistic independence only guarantees
that the first moment of a product can be written as the product of the moments.
Separations for higher orders are implied by standard independence only through a
cumulant parametrisation, where the cumulant generating function for a product of
independent random variables (defined as a random sum of independent realisations) is
the composition of the respective cumulant generating functions.

For the purpose of decision support in partial belief systems it is helpful to study mo-
ments, since expected utilities often formally depend on these. Consider for instance
two parameters θ1 and θ2. Suppose a conditional expected utility is equal to θ2

1θ
2
2 and
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that a moment independence of order (2, 2) holds. Then,

E
(
θ2

1θ
2
2

)
= E

(
θ2

1

)
E
(
θ2

2

)
= E(θ1)2E(θ2)2 + E(θ1)2V(θ2) + E(θ2)2V(θ1) + V(θ1)V(θ2).

(5.3.1)
The same expression is obtained when using sequentially the tower rule of expectations
and the law of total variance of Proposition 2.1.6 under the assumption of independence
of the two parameters above. Therefore, the expression obtained under moment inde-
pendence is reasonable and coincides with the one implied by the independence of θ1

and θ2. However the condition we need for equation (5.3.1) to hold does not require θ1

and θ2 to be independent.

5.4 Adequacy in Partially Defined Systems

Given the definitions of new independence concepts tailored for IDSSs, we can now study
in which cases adequacy holds. The following result easily follows from the definition of
partial independence.

Lemma 5.4.1. Suppose fd(λ1(θ1,d), . . . ,λm(θm,d)) is the algebraic conditional ex-
pected utility of an IDSS and that partial independence is in the structural consensus.
The IDSS is then adequate if panel Gi delivers the expectations ui(d), i ∈ [m], d ∈ D.

Proof. This result easily follows by noting that partial independence implies score sep-
arability. Specifically,

ū(d) = E (fd(λ1(θ1,d), . . . ,λm(θm,d))) = fd(E(λ1(θ1,d)), . . . ,E(λm(θm,d)))

=
∑
b∈B

kb,d
∏
i∈[m]

∏
j∈[si]0

µji(d).

The result then follows from Lemma 5.2.3.

Assuming the conditional expected utility is a polynomial in the panels’ parameters,
then under a specific moment independence assumption we have the following.

Lemma 5.4.2. Assume fd(λ1(θ1,d), . . . ,λm(θm,d)) is the algebraic conditional ex-
pected utility of an IDSS, θi = (θji)T

j∈[si] and λji(θi,d) = θ
aji

i , with aji ∈ Zsi
≥0, i ∈ [m],

j ∈ [si]. Let a∗i = (a∗ji)T
j∈[si], where a∗ji is the greatest element in {aji : j ∈ [si]}, i ∈ [m],

and let a∗T = (a∗i T)i∈[m]. Let θ = (θT
i )T

i∈[m] and assume the structural consensus in-
cludes the assumption that θ entertains moment independence of order a∗. Then the
IDSS is adequate if panel Gi delivers the vectors of expectations ui(d), i ∈ [m], d ∈ D.
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Proof. Adequacy is again guaranteed if the expected utility function can be written in
terms of µji(d), i ∈ [m], j ∈ [si] and d ∈ D. Note that

ū(d) = E (fd(λ1(θ1,d), . . . ,λm(θm,d))) =
∑
b∈B

kb,dE

 ∏
i∈[m]

∏
j∈[si]0

λji(θi,d)b(j,i)


=
∑
b∈B

kb,dE

 ∏
i∈[m]

∏
j∈[si]0

θ
aji

i

 .
The argument of this expectation is then a monomial of multi-degree lower or equal to
a∗ with respect to a lexicographic order. Moment independence then implies that

ū(d) =
∑
b∈B

kb,d
∏
i∈[m]

∏
j∈[si]0

µji(d),

and the result follows.

Both Lemma 5.4.1 and 5.4.2 start with the assumption of an algebraic conditional ex-
pected utility. This is the case for many of the examples we consider in Section 5.5.
However, we are able to identify families of utility factorisations and statistical models
that ensure the associated conditional expected utility is algebraic. We first introduce
two families of utilities that factorise according to the construction of the panels.

Definition 5.4.3. Let Yi be the vector overseen by panel Gi, i ∈ [m], and Ri be a
function of Yi and d ∈ D only. A multilinear factorisation over R1, . . . ,Rm is called
panel separable.

Definition 5.4.4. Under the conditions of Definition 5.4.3, an additive factorisation
over R1, . . . ,Rm is called additive panel separable.

Both families of panel separable and additive panel separable utilities can be seen as a
particular instance of a compatible utility factorisation in Definition 4.1.8.

The probabilistic model class we consider here is a generalisation of the DAG linear
regressions in equation (2.3.4) to generic polynomial functions. Henceforth we call these
a polynomial Structural Equation Model (SEM) [see e.g. Bollen and Lang, 1993, Ullman
and Bentler, 2003, Wall and Amemiya, 2000]. SEMs are widely used, especially recently,
in the causal literature [Pearl, 2000].

Definition 5.4.5. Let Y = (Yi)T
i∈[n] be a random vector. A polynomial SEM is

defined by, for i ∈ [n],
Yi =

∑
bi∈Bi

θibi
Y bi

[i−1] + εi,
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where Bi ⊂ Zi−1
≥0 , εi is an error with mean zero and variance ψ, and θibi

is a parameter,
i ∈ [n], bi ∈ Bi.

An alternative formulation of the model in Definition 5.4.5 in terms of distributions is,

Yi | θi,Y[i−1] ∼
( ∑
bi∈Bi

θibi
Y bi

[i−1], ψi
)
,

where θi = (ψi, θibi
)T
bi∈Bi

and i ∈ [n].

Note that these models are suitable candidates for a CK-class since their definition is
qualitative in nature.

For polynomial SEMs and panel separable utilities, the following holds.

Theorem 5.4.6. Suppose R = Y and assume panel Gi is responsible for Yi, i ∈ [n].
Assume that the utility consensus of an IDSS includes a panel separable utility and
that the structural consensus includes a polynomial SEM. Suppose each panel agreed to
model its marginal utility as a polynomial utility function. Then if panels are partially
independent, the IDSS is score separable.

The proof of this result can be found in Appendix A.4.1.

Theorem 5.4.6 together with Lemma 5.2.3 can be thought of as an instance of the
important Theorem 3.4.3, specifically addressing adequacy in partial belief systems. An
IDSS whose CK-class embeds the assumptions of Theorem 5.4.6 is able to uniquely
compute expected utility scores from the individual judgements of the panels.

Note that, by construction, the partial independence condition of Theorem 5.4.6 actually
corresponds to a moment independence. The order of such an independence depends
on the polynomial form of both the SEM and the utility function. In Section 5.5.2 we
identify the order of the moment independence condition required for adequacy for a
subclass of polynomial SEMs.

5.5 Examples

5.5.1 Discrete Models

5.5.1.1 Independence Binary Models. We begin with a rather obvious setting
where a small number of summaries are sufficient to determine an expected utility max-
imising decision. Let the CK-class specify that R = Y = (Yi)T

i∈[n], where each vari-
able Yi is binary and overseen by panel Gi. Assume the CK-class includes the belief
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that ⊥⊥ i∈[n]Yi | θ,d, where θ = (θi)T
i∈[n] and that θi can be read as the probability

P(Yi = 1 | θi,d), whatever decision d ∈ D is made, i ∈ [n]. We have already discussed
in Section 3.6.1.1 how independence models can be part of the structural consensus of
a CK-class.

As in the example in Section 3.3.2, suppose each panel Gi delivers the set of beta
distributions Be(pi, qi) for θi | d, i ∈ [n]. Assume further the CK-class includes utility
factorisations of the form

u(y1, . . . , yn) =
∑
i∈[n]

kiyi +
∑
i∈[n]

∑
j∈[n]i

kijyiyj .

With no further assumptions, the conditional expected utility can be written as

ū(d | θ) =
∑
i∈[n]

kiλi(θi,d) +
∑
i∈[n]

∑
j∈[n]i

kijλi(θi,d)λj(θj ,d), (5.5.1)

where λi(θi,d) = θi, [n]i = {i + 1, . . . , n}. Thus, equation (5.5.1) is an algebraic con-
ditional expected utility. In this example partial independence then corresponds to
moment independence of order 1, where 1 is a vector of dimension n with 1 in all its
entries. In this case, partial independence is implied by panel independence. Further-
more all the monomials λb(θ, d) formally defined in equation (5.2.1) here are monomials
of degree either one or two corresponding respectively to λi(θi,d) or λi(θi,d)λj(θj ,d),
for i ∈ [n] and j ∈ [n]i.

Now let µi = pi(pi + qi)−1 = E(θi | d) and assume partial independence is in the
CK-class. We can see that taking the expectation of equation (5.5.1) we have that

ū(d) =
∑
i∈[n]

kiµi +
∑
i∈[n]

∑
j∈[n]i

kijµiµj ,

where ū(d) is the expected utility. Thus this IDSS is adequate. Note that this IDSS
does not need panel independence to uniquely compute expected utility scores, but only
a simple moment independence.

5.5.1.2 Staged Trees. Consider now the staged tree in Figure 2.7 of Section 2.3.2.6,
that we report again on page 150 for convenience. As discussed in Section 3.6.1.7, staged
trees can be part of a coherent IDSS whenever panels oversee disjoint subsets of either
the position set or the stage set. Recall that this tree has four stages (coinciding with
its positions) w0 = {v0}, w1 = {v1}, w2 = {v2} and w3 = {v3, v4}. Suppose there are
three panels G1, G2 and G3 having responsibility over w0, {w1, w2} and w3 respectively.
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• v7

• v3 no
//

yes 55

• v8

• v1 low
//

high 55

• v4 yes //

no ))
• v9

v0 •
yes 66

no ((
• v10

• v2
high //

low ))
• v5

• v6

In the notation of Example 2.3.30, assume the collective has agreed on an additive utility
factorisation such that

u(y1, y2, y3) = k1u1(y1) + k2u2(y2) + k3u3(y3),

where Y1, Y2, Y3 are the variables in the associated BN representation of this tree, and
that they have been jointly able to further specify the criterion weights. Label the
outcomes of this tree with a 1 for yes and high, whilst a 0 denotes no and low outcomes.
Let ψij = ui(j), where j ∈ {0, 1}, and recall that θss′ = P(Ys = s′ | θ,d), for a situation
s ∈ S(T ), s′ ∈ Ys = {1, 0} and d ∈ D, where θ is the overall parameter vector. In this
parametrisation, the staged tree in Figure 2.7 introduces the constraints θ31 = θ41 and
θ30 = θ40, where for example θ31 = P(Y3 = yes | Y2 = high, Y1 = yes,θ,d).

Through a sequential application of the tower rule of expectation, it can be easily de-
duced that the conditional expected utility of this problem can be written as

ū(θ | d) = ū1 + ū2 + ū3, (5.5.2)

where

ū1 = k1ψ11θ01 + k1ψ10θ00,

ū2 = k2ψ21θ11θ01 + k2ψ20θ10θ01 + k2ψ21θ21θ00 + k2ψ20θ20θ00,

ū3 = k3ψ31θ31θ11θ01 + k3ψ30θ30θ11θ01 + k3ψ31θ41θ10θ01 + k3ψ30θ40θ10θ01.

(5.5.3)

So the conditional expected utility in equations (5.5.2)-(5.5.3) is again algebraic. The
coefficients kb,d of the monomials in equation (5.2.1) correspond to the jointly agreed
criterion weights, and the unknown functions λi(θi,d) are as follows

λ1(θ1,d) = (ψ11θ01, ψ10θ00)T,

λ2(θ2,d) = (θ11, θ10, θ21, θ20, ψ21θ11, ψ20θ10, ψ21θ21, ψ20θ20)T,

λ3(θ3,d) = (ψ31θ31, ψ30θ30)T.



Chapter 5. The Algebra of Integrated Partial Belief Systems 154

Thus once more these polynomials are a simple multilinear function of probabilities
delivered by different panels. Under partial independence, as guaranteed by Lemma
5.2.3, an IDSS so defined is adequate.

5.5.2 Bayesian Networks

We now consider the BN model class, where each variable of the network is defined as
the DAG linear regression introduced in Definition 2.3.14. Note that this is an instance
of the polynomial SEM of Definition 5.4.5. We refer to this model as a linear SEM over
a DAG G. Although such a model is often multivariate Gaussian, in general this does
not have to be the case.

Just as Sullivant [2008], we consider regression parameters as indeterminates in a poly-
nomial function. We associate these to edges and vertices of the underlying DAG. Let
G be a DAG with vertex set V (G) = {Yi : i ∈ [n]} and let, for i ∈ [n], θ′0i = θ0i + εi

be the indeterminate associated to the vertex Yi, whilst θij , for (Yi, Yj) ∈ E(G), is the
indeterminate associated to the corresponding edge.1 Define ~Pi as the set of rooted
directed paths (see Appendix B) in G ending in Yi. For every element P ∈ ~Pi we define
θP as

θP =
∏
Yi∈P

θ′0i
∏

(Yi,Yj)∈P
θij ,

and we call θP the path monomial.

Example 5.5.1. Consider the DAG in Figure 2.1. The set ~P3 for instance is equal to

{(Y3), (Y2, (Y2, Y3)), (Y1, (Y1, Y3)), (Y1, (Y1, Y2), (Y2, Y3))}, (5.5.4)

and θ′03, θ′02θ23, θ′01θ13 and θ′01θ12θ23 are the corresponding path monomials.

For the purpose of this section we call algebraic substitution the process of plugging-in
the linear regression definition of a random variable of the DAG into the structural
equation definition of the child variable. To illustrate this process, we present now an
example of what we mean by an algebraic substitution.

Example 5.5.2. Consider again the DAG in Figure 2.1. For this network the variables
are defined as

Y4 = θ04 + θ14Y1 + ε1, Y3 = θ03 + θ13Y1 + θ23Y2 + ε3,

Y2 = θ02 + θ12Y1 + ε2, Y1 = θ01 + ε1.

1We think of θ′0i as a parameter although this consists of the sum of a parameter and an error. Note
however that from a Bayesian viewpoint these are both random variables.
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An algebraic substitution of the variables in the definition of Y3 entails

Y3 = θ03 + θ13(θ01 + ε1) + θ23(θ02 + θ12Y1 + ε2) + ε3

= θ03′ + θ13θ
′
01 + θ23θ

′
02 + θ23θ12Y1. (5.5.5)

Note that an additional algebraic substitution can be performed in equation (5.5.5) so
that

Y3 = θ′03 + θ13θ
′
01 + θ23θ

′
02 + θ23θ12θ

′
01. (5.5.6)

It is of special interest that after this substitution Y3 is now uniquely defined in equation
(5.5.6) in terms of regression parameters. The following proposition formalises that this
is in general the case for any variable of a DAG defined as a linear SEM.

Proposition 5.5.3. Let G be a DAG with vertex set {Yi : i ∈ [n]}, whose variables are
defined as a linear SEM. Then through algebraic substitutions each variable Yi, i ∈ [n],
can be written as

Yi =
∑
P∈~Pi

θP .

Proof. We prove this result via induction over the indices of the variables. The variable
Y1 is by construction a root of the DAG G. Thus Y1 = θ′01, where θ′01 is the monomial
associated to the only rooted path ending in Y1, namely (Y1). Assume the result is true
for Yn−1 and consider Yn. By construction and by the inductive hypothesis we have that

Yn = θ′0n +
∑
i∈Πn

θinYi = θ′0n +
∑
i∈Πn

θin
∑
P∈~Pi

θP . (5.5.7)

Note that every rooted path ending in Yn is either (Yn) or consists of a rooted path
ending in Yi, i ∈ Πn, together with the edge (Yi, Yn). From this observation the result
then follows by rearranging the terms in equation (5.5.7).

Example 5.5.4. Equation (5.5.6) shows that Y3 can be written as the sum of the
monomials associated to each rooted path ending in Y3, where the set of rooted paths
is in equation (5.5.4).

An algebraic substitution corresponds to computing the conditional expectation of a
random variable. This result is formalised by the following proposition.

Proposition 5.5.5. Let θT = (θT
i ), where θi = (θ′0i, θji)T

j∈Πi
, i ∈ [n]. Under the

conditions of Proposition 5.5.3, we have that

E(Yi | θ,d) =
∑
P∈~Pi

θP .
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Proof. This result is proven via the same inductive process as in the proof of Proposition
5.5.3. Note that the result holds for Y1 since E(Y1 | θ) = θ′01. Assume the proposition is
true for Yn−1 and consider Yn. We have that

E(Yn | θ,d) = E(E(Yn | θn,YΠn ,d) | θ,d) = E
(
θ′0n +

∑
i∈[n]

θinYi | θ,d
)

= θ′0n +
∑
i∈[n]

θinE(Yi | θ,d) = θ′0n +
∑
i∈[n]

θin
∑
P∈~Pi

θP .

Using a similar argument as in the proof of Proposition 5.5.3 the result follows.

5.5.2.1 Additive Factorisations. Given Propositions 5.5.3 and 5.5.5, we are now
able to polynomially compute the expected utility of additive utility factorisations over
the graphs in the case the marginal utility functions are polynomial.

Lemma 5.5.6. For a linear SEM over a DAG G with vertex set {Yi : i ∈ [n]}, suppose
R = Y and that the utility function u(r) can be written

u(r) =
∑
i∈[n]

kiui(yi).

Suppose further ui is a polynomial utility function of degree ni, i.e. ui =
∑
j∈[ni] ρijy

j
i .

Then the conditional expected utility is algebraic and can be written as

ū(d | θ) =
∑
i∈[n]

ki
∑

j∈[ni]0
ρij

∑
|αi|=j

(
j

αi

)
θαi
Gi
, (5.5.8)

where αi = (αij)T
j∈[#~Pi]

∈ Z#~Pi
≥0 , #~Pi is the number of elements in ~Pi, |αi| =

∑
j∈[#~Pi] αij,

θGi =
∏
P∈~Pi

θP and
( j
αi

)
is a Multinomial coefficient (see Appendix C.1.2).

Proof. From Proposition 5.5.5, it follows that

E(u(R) | θ,d) =
∑
i∈[n]

ki
∑

j∈[ni]0
ρij

( ∑
P∈~Pi

θP

)j
.

The result follows applying the Multinomial theorem (see Appendix D).

Equation (5.5.8) is an instance of the computation of the moments of a decomposable
function as studied in Cowell et al. [1999] and Nilsson [2001], where in this case we
explicitly deduce the required monomials and their degree. In the following section we
generalise their results to generic multilinear functions.
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The proof of Lemma 5.5.6 provides an intuitive graphical description of the required
monomials for the computation of the expected utility in equation (5.5.8). Furthermore
the proof instructs us on how to compute any marginal moment of a linear SEM. Note
that the j-th moment of any variable Yi in such a BN can be written, via the Multinomial
theorem, as the sum of the monomials θGi with degree j. We can observe that, following
from the properties of Multinomial coefficients, this sum can be thought of as the sum
over the set of unordered j-tuples of paths ending in Yi. Call this set ~P ji . For a j-tuple
P ∈ ~P ji , the Multinomial coefficient in equation (5.5.8) counts the distinct permutations
of the elements of P , denoted as nP . We therefore have that

∑
|αi|=j

(
j

αi

)
θαi
Gi

=
∑
P∈~P j

i

nP
∏
p∈P

θp. (5.5.9)

Equation (5.5.9) is an intuitive graphical interpretation of equation (5.5.8).

Example 5.5.7. For simplicity we consider now the vertex Y4 in the DAG of Figure 2.1.
The set ~P4 is equal to {(Y4), (Y1, (Y1, Y4))}. From equation (5.5.8), Y 2

4 can be written as

θ′204 + θ′201θ
2
14 + 2θ′01θ14θ

′
04. (5.5.10)

The polynomial above can be equally deduced by simply looking at the DAG. Note that

~P 2
4 =

{(
(Y4), (Y4)

)
,
(
(Y1, (Y1, Y4)), (Y1, (Y1, Y4))

)
,
(
(Y4), (Y1, (Y1, Y4))

)}
.

The first and second monomial in equation (5.5.10) correspond to the first and second
element of ~P 2

4 respectively, whilst the last elements of this set, having two distinct
permutation of its elements, is associated to the third monomial in equation (5.5.10)

From Lemma 5.5.6 we can deduce the independence needed for adequacy in BNs.

Theorem 5.5.8. Suppose R = Y and that the structural consensus of an IDSS includes
a linear SEM over a DAG with vertex set {Yi : i ∈ [n]}, where panel Gi oversees the
vertex Yi of G, i ∈ [n]. Suppose the utility consensus consists of an additive panel sepa-
rable utility function and panel Gi agreed to model its marginal utility with a polynomial
utility function of degree ni ∈ Z≥1, i ∈ [n]. Let lP be the length of a rooted path P ,
li =

∑
P∈~Pi

lP and αi ∈ Zli≥0. If θGi entertains moment independence of order αi for
every |αi| = ni and i ∈ [n], then the IDSS is score separable.

Proof. Under the assumptions of the theorem, the conditional expected utility function
can be written as in equation (5.5.8). From the linearity of the expectation operator we
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have that

ū(d) = E(ū(d | θ)) =
∑
i∈[n]

ki
∑

j∈[ni]0
ρij

∑
|αi|=j

(
j

αi

)
E
(
θαi
Gi
| d
)
.

Noting that θGi =
∏
P∈~Pi

θP , θP =
∏
Yi∈P θ

′
0i
∏

(Yj ,Yk)∈P θjk and applying moment inde-
pendence, we have that

ū(d) =
∑

i∈[n],j∈[ni]0,
|αi|=j

kiρij

(
j

αi

) ∏
P∈~Pi,Yl∈P

E
(
θ′αil

0l θ
αlChl
lChl

| d
) ∏
(Yj ,Yk)∈P\(Yl,YChl

)
E
(
θαik
jk | d

)
,

where αij is the element of αi associated to θkj . The lemma then follows since ū(d) is
a multilinear function of expectations individually delivered by the panels.

Theorem 5.5.8 can be seen as an instance of Theorem 5.4.6 where we have been able
to identify the specific moment independences necessary for the IDSS’s adequacy. By
requesting the collective to agree on these independences, the IDSS can then quickly
produce a unique expected utility score for each policy. Furthermore, panels are informed
about the summaries that they need to deliver to the IDSS since these are the only
quantities the expected utility is a function of.

We can observe that in this case the functions λij panel Gi delivers, i ∈ [n], j ∈ [si], are
simply powers of monomials having one or two indeterminates only. Therefore, if panels
deliver the expectation of these functions, where the required degrees are specified by
Theorem 5.5.8, an IDSS so defined will be adequate.

5.5.2.2 Multilinear Factorisations. The algebraic approach we have taken in this
chapter allows us to generalise straightforwardly the results on additive/decomposable
functions to multilinear functions. We start analysing this more general case by stating
two introductory results.

Proposition 5.5.9. Let G be a DAG with vertex set {Yi : i ∈ [n]} and assume R = Y .
Assume a multilinear utility factorisation over the graph such that

u(r) =
∑

I∈P0([n])
kI
∏
i∈I

ui(yi),

where P0 denotes the power set without the empty set. Then letting each marginal utility
ui(yi) be polynomial of degree ni and n = (ni)T

i∈[n] ∈ Zn,

u(r) =
∑

0<lexα≤lexn

cαy
α, (5.5.11)
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where α = (αi)T
i∈[n] ∈ Zn≥0, cα = kJ

∏
j∈J ρjαj and J = {j ∈ [n] : αj 6= 0}.

The proof of this result is given in Appendix A.4.2.

Proposition 5.5.10. For a linear SEM over G with vertex set {Yi : i ∈ [n]}, letting
α = (αi)T

i∈[n] ∈ Zn≥0 and assuming #~Pi = ni, i ∈ [n], we have that

Y α =
∑
β'α

(
|α|
β

)
θβG , (5.5.12)

where β = (βT
i )T

i∈[n], βi = (βij)T
j∈[ni] ∈ Zni

≥0, θG =
∏
i∈[n] θGi and we write α ' β if both

|α| = |β| and ∀ i ∈ [n] , |βi| = αi.

Proof. The monomial Y α can be written as

Y α =
∏
i∈[n]

Y αi
i =

∏
i∈[n]

 ∑
|βi|=αi

(
αi
βi

)
θβi
Gi

 =
∑
β'α

θβG
∏
i∈[n]

(
αi
βi

)
.

Noting that ∏
i∈[n]

(
αi
βi

)
=

∏
i∈[n] αi!∏

i∈[n]
∏
j∈[ni] βij !

=
(
|α|
β

)
,

the result follows.

From the previous two results we then deduce the following.

Lemma 5.5.11. Under the assumptions of Propositions 5.5.9 and 5.5.10, the condi-
tional expected utility is algebraic and can be written as

ū(d | θ) =
∑

0<lexα≤lexn

cα
∑
β'α

(
|α|
β

)
θβG . (5.5.13)

Proof. This follows by plugging in equation (5.5.12) into equation (5.5.11).

Although straightforward, Lemma 5.5.11 makes a significant generalisation to the theory
of the computation of moments in decomposable/additive functions of Cowell et al. [1999]
and Nilsson [2001] to multilinear functions of BNs defined as a linear SEM. This result
is also connected to the propagation algorithms first developed in Lauritzen [1992]. In
that paper, the computation of the first two moments of a much larger class of models
(chain graphs with both discrete and continuous variables) is considered. Here, focusing
only on a certain class of continuous DAG models, we are able to explicitly compute,
through algebraic substitution, any moment of the distribution associated to the graph.
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((Y2), (Y2), (Y4), (Y4))

((Y1, (Y1, Y2)), (Y2), (Y4), (Y4))

((Y1, (Y1, Y2)), (Y1, (Y1, Y2)), (Y4), (Y4))

((Y2), (Y2), (Y1, (Y1, Y4)), (Y4))

((Y1, (Y1, Y2)), (Y2), (Y1, (Y1, Y4)), (Y4))

((Y1, (Y1, Y2)), (Y1, (Y1, Y2)), (Y1, (Y1, Y4)), (Y4))

((Y2), (Y2), (Y1, (Y1, Y4)), (Y1, (Y1, Y4)))

((Y1, (Y1, Y2)), (Y2), (Y1, (Y1, Y4)), (Y1, (Y1, Y4)))

((Y1, (Y1, Y2)), (Y1, (Y1, Y2)), (Y1, (Y1, Y4)), (Y1, (Y1, Y4)))

Table 5.1: Tuples of dimension 4 with two paths ending in Y2 and two ending in Y4
in the graph of Figure 2.1.

Using again the properties of Multinomial coefficients, we can relate equation (5.5.13)
to the topology of the graph and its rooted paths. For an α ∈ Zn≥0, let ~Pα be the set of
unordered |α|-tuples of paths, where in each tuple there are αi paths ending in Yi. For
each element P ∈ ~Pα, let nP be the sum of nPi , the number of distinct permutations of
paths ending in Yi in ~Pα. Then we have that

∑
β'α

(
|α|
β

)
θβG =

∑
P∈~Pα

nP
∏
p∈P

θp.

Example 5.5.12. Consider E(Y 2
2 Y

2
4 ). All distinct tuples of dimension four where two

paths end in Y2 and two in Y4 are summarised in Table 5.1. The associated condi-
tional expectation can be written as the following polynomials, where the i-th monomial
corresponds to the tuple in the i-th row of Table 5.1:

ū(d | θ) = θ′202θ
′2
04 + 2θ12θ

′
02θ
′2
04 + θ2

12θ
′2
04 + 2θ′202θ14θ

′
04+

4θ12θ
′
02θ14θ04 + 2θ2

12θ14θ
′
04 + θ′202θ

2
14 + 2θ12θ

′
02θ

2
14 + θ2

12θ
2
14.

Note for example that θ12θ
′
02θ
′2
04 has coefficient 2 since the paths (Y2) and (Y1, (Y1, Y2))

can be permuted, whilst θ12θ
′
02θ14θ04 has coefficient 4 since both pairs of paths (Y2) and

(Y1, (Y1, Y2)) and (Y4) and (Y1, (Y1, Y4)) can be permuted.

Just as in the additive case, we are now able to deduce the independences required for
score separability of an IDSS defined over a BN.

Theorem 5.5.13. Suppose R = Y and that the structural consensus of an IDSS in-
cludes a linear SEM over a DAG with vertex set {Yi : i ∈ [n]}, where panel Gi oversees
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the vertex Yi of G, i ∈ [n]. Suppose the utility consensus consists of a panel separa-
ble utility and panel Gi agreed to model its marginal utility with a polynomial utility
function of degree ni ∈ Z>0, i ∈ [n]. Let li = #~Pi and lG =

∑
i∈[n] li, i ∈ [n]. Let

αG = (αT
i )T
i∈[n] ∈ ZlG≥0, αi = (αiP )T

P∈~Pi
and n = (ni)T

i∈[n] ∈ Zn≥0. If, for every α ' n
θG = (θi)T

i∈[n], with θi = (θP )T
P∈~Pi

, entertains moment independence of order α, then
the IDSS is score separable.

Proof. Under the conditions of the theorem, the conditional expected utility function
can be written as in (5.5.13). The linearity of the expectation operator than implies
that

E(ū(d | θ)) =
∑

0<lexα≤lexn

cα
∑
β'α

(
|α|
β

)
E
(
θαG | d

)
.

Now note that

θG =
∏
i∈[n]

θGi =
∏
i∈[n]

∏
P∈~Pi

θP =
∏
i∈[n]

∏
P∈~Pi

∏
Yl∈P

θ′0l
∏

(Yj ,Yk)∈P
θjk.

Taking the expectation of θαG we then have that

E
(
θαG | d

)
= E

( ∏
i∈[n]

θαi
Gi
| d
)

= E
( ∏
i∈[n]

∏
P∈~Pi

θαiP
P | d

)

= E
( ∏
i∈[n]

∏
P∈~Pi

∏
Yl∈P

θ′αiP
0l

∏
(Yj ,Yk)∈P

θαiP
jk | d

)
,

=
∏
i∈[n]

∏
P∈~Pi

∏
Yl∈P

E
(
(θ′0lθlChl

)αiP | d
) ∏

(Yj ,Yk)∈P\(Yl,YChl
)
E
(
θαiP
jk | d

)
,

where the last equality follows from moment independence. Score separability then
follows.

This theorem generalises Theorem 5.5.8 to multilinear utility factorisations and thus to
a much larger class of IDSSs.

5.5.3 Conflict Models

In this section we exploit the algebraic structure of the conditional expected utility of
some simple IDSSs to deduce which panels’ belief specification leads to either agreement
or disagreement between the members of the collective.

5.5.3.1 A First Simple Example. Suppose an IDSS simply consists of two random
variables, Y1 and Y2, assumed independent of each other and overseen by two different
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panels. For instance Y1 might represent the costs deriving from a nuclear accident,
whilst Y2 is the number of people not exposed by the contamination. Suppose the
optimal number d ∈ Z0<d≤D, D ∈ Z, of inhabitants to be evacuated from a nearby
village needs to be found. Assume Yi | θi, d ∼ Exp(θi/d), θi ∈ R>0, i ∈ [2], so that Yi
follows an exponential distribution with density θie−θiyi , and let

u(y1, y2) = k1u1(y1) + k2u2(y2),

with u1(y1) = −α1y
2
1 − β1y1 + γ1, u2(y2) = α2y

2
2 + β2y2 and α1, α2, β1, β2, γ1 ∈ R≥0.

Recall that E(Yi | d, θi) = d/θi and V(Yi | θi, d) = d2/θ2
i . Then as the number of people

evacuated increases, both the costs and the number of non exposed people increase as
well. Furthermore note that u1 and u2 are respectively an increasing and decreasing
function of their arguments in R≥0.

It can be easily deduced that the conditional expected utility for an IDSS so defined is
equal to

ū(d | θ) = E(u(Y1, Y2) | θ,d) = k1

(
−2α1d

2

θ2
1
− β1d

θ1
+ γ1

)
+ k2

(
2α2d

2

θ2
2

+ β2d

θ2

)

= 2
(
k2α2
θ2

2
− k1α1

θ2
1

)
d2 +

(
k2β2
θ2
− k1β1

θ1

)
d+ k1γ1.

This is a quadratic function of the decision d. Note that if

k2α2
θ2

2
>
k1α1
θ2

1
,

then ū(d | θ) is concave. Assuming k2β2/θ2 < k1β1/θ1, otherwise the maximum of the
function tends to zero, ū(d | θ) is maximal for some point d∗ within the interval (0, D].
Therefore optimal policies will in general consist of a balancing of the two attributes
and both panels are likely to agree on such a course of action.

On the other hand when
k2α2
θ2

2
<
k1α1
θ2

1
,

then ū(d | θ) is convex. In this case then the maximum will either be at D or approaching
zero, corresponding to only optimising the cost or the exposition attributes respectively.
In this situation it will be difficult for panels to agree on the outputs of the IDSS and
any policy choice might be contentious. Note that when the coefficient of d2 is close to
zero, then small changes in the elicitation of the parameters might lead to a change from
one of the two cases described above to the other.
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5.5.3.2 A More Composite Scenario. Although the previous example shed light
on the information that the conditional expected utility function carries about the be-
haviour of its optimal, the study of this behaviour was based on simple analytic concepts.
We now consider a more difficult situation and use results from catastrophe theory [Pos-
ton and Stewart, 2014, Zeeman, 1979] in the context of expected utility maximisation
similarly to Dodd and Smith [2012] and Smith and Dodd [2012].

Suppose an IDSS is defined as in Section 5.5.3.1 above, with the only difference that the
utility consensus now includes the utility factorisation

u(y1, y2) = u1(y1)u2(y2).

The conditional expected utility can then be computed as

ū(d | θ) =
(
−2α1d

2

θ2
1
− β1d

θ1
+ γ1

)(
2α2d

2

θ2
2

+ β2d

θ2

)

= −4α1α2
θ2

1θ
2
2
d4 − 2

(
α1β2θ2 + β1α2θ1

θ2
1θ

2
2

)
d3 + 2γ1α2θ

2
1 − β1β2θ1θ2
θ2

2θ
2
1

d2 + γ1β2
θ2

d.

In order to study the behaviour of the maxima of this function we first differentiate this
expansion and then equate it to zero. Specifically,

d
ddū(d) = d3 + 2

3
α2b1 + b2α1

a
d2 + b2b1 − 2α2c

2a d− b2c

4a ,

where a = α1α2, b1 = β1λ1, b2 = β2λ2 and c = λ2
1γ1. By letting e = 2

3
α2b1+b2α1

a ,
f = b2b1−2α2c

2a , g = − b2c
4a and z = d+ e

3 , the equation above can be set to zero as

z3 +
(
f − 1

3e
2
)
z +

(
g + 2

(
e

3

)3
− ef

3

)
= 0.

The local maxima of the conditional expected utility can therefore be described, as in
Smith and Dodd [2012], by the canonical cusp catastrophe [Zeeman, 1979], where the
splitting factor of this cusp catastrophe is −(f − (1/3)e2). Therefore when

f − 1
3e

2 ≥ 0 ⇐⇒ α1

(19
54b2b1α2 − b22α1

)
≥ α2

2

(
cα1 + 4

27b
2
1

)
,

the conditional expected utility has one local maximum only: a compromise between
the two attributes.

On the other hand if f − 1
3e

2 < 0, then for values of g + 2
(
e
3
)3 − ef

3 close to zero, the
maximum of the expected utility function will either tend to d = 0 or be d = D. In this
case the optimal decision will only aim at minimising either the costs or the number of
people exposed. In such a situations small changes of the parameters might then lead
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to opposite optimal decision rules and agreement within the collective might be difficult
to reach.

5.6 A Note on Some New Symbolic Methods

This section reports recent developments on symbolic methods for inference and deci-
sion making in both MIDs and staged trees from Leonelli et al. [2015a] and Görgen
et al. [2015], respectively. Although these results will not be discussed within the IDSS
framework, we saw in Section 3.6 that both these model classes can be included in
the structural consensus of a coherent and distributed IDSS under certain conditions.
Therefore the results below can enhance the support an IDSS provides in practice.

5.6.1 Symbolic Evaluation of Influence Diagrams

In this section we introduce a symbolic definition of MIDs and develop a symbolic
evaluation algorithm. The implementation of this algorithm with our Maple code is
reported in Appendix E.

Let G be a Multiplicative Influence Diagram (MID) in extensive form with vertex set
{Yi, uj : j ∈ [m], i ∈ [n]}. Assume each variable Yi, i ∈ [n], takes values in Yi = [ri−1]0.

5.6.1.1 Polynomial Structure of Expected Utilities. Generalising the work in
Darwiche [2003] and Castillo et al. [1995], we introduce a symbolic representation of
both the probabilities and the utilities of an MID. For i ∈ V, j ∈ [m], and any y ∈ Yi,
π ∈ YΠi and σ ∈ YPj , we define the parameters

piyπ = P(Yi = y | YΠi = π), ψjσ = uj(σ).

The first index of piyπ and ψjσ refers to the random variable and the utility vertex
respectively. The second index of piyπ relates to the state of the variable, whilst the
third one to the parents’ instantiation. The second index of ψjσ corresponds to the
instantiation of the arguments of the utility function uj . We take the indices within π
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and σ to be ordered from left to right in decreasing order, so that e.g. p6101 for the
MID in Figure 2.18, that for convenience we report on top of page 162, corresponds
to P(Y6 = 1 | Y5 = 0, Y4 = 1). The probability and utility vectors are defined as
pi = (piyπ)T

y∈Yi,π∈YΠi
and ψj = (ψjπ)T

π∈YPj
, respectively, i ∈ [n], j ∈ [m]. Parameters

are listed within pi and ψj according to a reverse lexicographic order over their indices
(see Appendix D).

Example 5.6.1. The symbolic parametrisation of the MID in Figure 2.18 is summarised
in Table 5.2. This is completed by the definition of the criterion weights ki and h as in
equations (2.4.3)-(2.4.4). In Appendix E we report the symbolic definition of this MID
using our Maple code.

Because probabilities sum to unity for each i and π, one of the parameters piyπ can be
written as one minus the sum of the others. Another constraint is induced by equa-
tion (2.4.4) on the criterion weights. However in the following, unless otherwise indi-
cated, we suppose that all the parameters are unconstrained. Any unmodelled constraint
can be added subsequently when investigating the geometric features of the optimal de-
cision.

Recall that ūi(yBi), i ∈ [n], introduced in Proposition 2.5.10, is the expected utility
after either the marginalisation or the maximisation of Yi and Bi is defined in equation
(2.5.1).

Definition 5.6.2. We define the conditional expected utility vector ūi as

ūi = (ūi(yBi))T
yBi
∈YBi

. (5.6.1)

In the above parametrisation, ūi consists of a vector of polynomials with indeterminates
piyπ, ψjσ, ki and h, for i ∈ [n], j ∈ [m], y ∈ Yi, π ∈ YΠi and σ ∈ YPj , whose
characteristics are specified in Theorem 5.6.3. Recall that the Decision Sequence (DS)
of an MID is the totally ordered sequence over its vertex set and J = {ji : i ∈ [m]} is
the index set of the vertices preceding a utility node in the DS.

Theorem 5.6.3. For an MID G and i ∈ [n], let ci =
∏
j∈Bi

rj, ul be the first utility
node following Yi in the DS of G and, for j ∈ [m]l−1, let wij be the number of random
nodes between Yi and uj (including Yi) in the DS of G. Then ūi is a vector of dimension
ci whose entries are polynomials including, for a ∈ [m]l−1 and b ∈ [a]l−1, riba ∈ Z≥1

monomials miba of degree diba ∈ Z≥1, where

riba =
(a−l
b−l
)∏

j∈[ja] rj , diba = (b− l) + 2(b− l + 1) + wia, miba = hb−lm′iba, (5.6.2)

with m′iba a square free monomial of degree 2(b− l + 1) + wia.
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p2 = (p211, p201, p210, p200)T

p3 = (p3111, p3011, p3101, p3001, p3110, p3010, p3100, p3000)T

p5 = (p5111, p5011, p5101, p5001, p5110, p5010, p5100, p5000)T

p6 = (p6111, p6011, p6101, p6001, p6110, p6010, p6100, p6000)T

ψ1 = (ψ11, ψ10)T, ψ2 = (ψ21, ψ20)T, ψ3 = (ψ311, ψ301, ψ310, ψ300)T

Table 5.2: Parametrisation associated to the diagram in Figure 2.18.

The proof of Theorem 5.6.3 is given in Appendix A.4.3. We say that equation (5.6.2)
defines the structure of the polynomials of the conditional expected utility ūi. Specifi-
cally, the structure of a polynomial consists of its number of monomials and the number
of monomials having a certain degree. In Leonelli et al. [2015a] we demonstrate that
the entries of the conditional expected utility vectors of many different MIDs share the
same polynomial structure. Two MIDs whose expected utility polynomials have the
same structure are said to be equivalent. We discuss in Leonelli et al. [2015a] how the
notion of equivalent MIDs (equipped with a lattice structure) can be used for instance
for model choice and sensitivity analyses.

Since additive utility factorisations can be seen as special cases of multiplicative ones by
setting h = 0, it follows that the conditional expected utility polynomials of an additive
ID are square-free.

Corollary 5.6.4. In the notation of Theorem 5.6.3, the conditional expected utility ūi,
i ∈ [n], of an additive ID G is a vector of dimension ci whose entries are square-free
polynomials of degree wim + 2 including, for a ∈ [m]l, ria ∈ Z≥1 monomials of degree
wia + 2, where ria =

∏
j∈[ja] rj.

Proof. This follows directly from Theorem 5.6.3, since an additive factorisation can be
derived by setting nI − 1, the exponent of h in equation (2.4.4), equal to zero. This
corresponds to fixing b = l in Theorem 5.6.3.

Example 5.6.5. For the MID of Figure 2.18 the polynomial structure of the entries
of ū5 can be constructed as follows. Recalling that all the variables are binary, from
B5 = {3, 4} it follows that c5 = 4. Thus, ū5 is a column vector of dimension 4. From
u2 ≡ ul, it follows that

r522 = 2, r523 = 4, r533 = 4, d522 = 3, d523 = 4, d533 = 7,

where we used the fact that w52 = 1 and w53 = 2. All monomials are square-free because
the index b of riba in Theorem 5.6.3 is equal to either l or l + 1. Each entry of ū5 is
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a square-free polynomial of degree seven consisting of ten monomials: two of degree 3,
four of degree 4 and four of degree 7. The entry ū5(y3, y4) with y3, y4 ∈ [1]0, of this
conditional expected utility can be written as ū5(y3, y4) = ūl5(y3, y4) + ūm5 (y3, y4) where

ūl5 = k2(ψ21p51y4y3 + ψ20p50y4y3) +
∑

y5∈[1]0
k3(ψ31y4p61y5y4 + ψ30y4p60y5y4)p5y5y4y3 , (5.6.3)

ūm5 = hk2k3((ψ31y4p610y4+ψ30y4p600y4)ψ20p50y4y3 + (ψ31y4p611y4+ψ30y4p601y4)ψ21p51y4y3).
(5.6.4)

An algorithm for computing the polynomials in Theorem 5.6.3 is presented in Sec-
tion 5.6.1.3.

So far we have assumed that a decision centre has not provided any numerical speci-
fication of the uncertainties and the values involved in a given decision problem. This
occurs for example if the system is defined through sample distributions of data from
different experiments, where probabilities are known with uncertainty. But in practice
sometimes the members of the centre are able to elicit the numerical values of some
parameters. These can then be simply substituted into the corresponding probability
and utility parameters in the system of polynomials constructed in Theorem 5.6.3 em-
ploying e.g. a computer algebra system. In such a case the degree of the polynomials
and possibly their number of monomials can decrease dramatically. We present in Sec-
tion 5.6.1.2 a plausible numerical specification of the probabilities associated with the
MID in Figure 2.18.

5.6.1.2 A New Algebra For MIDs. Computing the polynomials in Theorem 5.6.3
is a well known NP-hard problem [Cooper, 1990]. Here we develop an algorithm based on
three operations which exploit the polynomial structure of expected utilities and use only
linear algebra calculus. The Maple code for their implementation is in Appendix E. In
contrast to the symbolic algorithms mentioned in Section 5.1, our algorithm sequentially
computes only monomials that are part of the MID’s expected utilities.

The operations we introduce below entail a change of dimension in the probability,
utility and conditional expected utility vectors because some of the components in
their subvectors are duplicated. These duplications are called EUDuplicationPsi and
EUDuplicationP. These are required in order to multiply parameters associated to com-
patible instantiations only. We do not report here the working of these procedure, since
these are not fundamental for following developments, but we include their Maple im-
plementations in Appendix E. More details about these can also be found in Leonelli
et al. [2015a].
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The first of the three operations we introduce is EUMultiSum, which computes a weighted
multilinear sum between a utility vector and a conditional expected utility. For addi-
tive IDs, EUMultiSum consists of only summations since h = 0. In the algorithm of
Section 5.6.1.3, an EUMultiSum operation is associated to every utility vertex of the
MID.

Definition 5.6.6 (EUMultiSum). For i ∈ [n], let ūi+1 be a conditional expected utility
vector and ψj the utility vector of node uj, j ∈ [m], succeeding Yi in the DS. The
EUMultiSum, +EU, between ūi+1 and ψj is defined as

1. ū′i+1,ψ
′
j ←−EUDuplicationPsi(·);

2. h · kj · (ū′i+1 ◦ ψ′j) + kj ·ψ′j + ū′i+1, where ◦ and · denote the Schur (or element
by element) and the scalar products respectively.

The second operation, EUMarginalisation, is applied to any random vertex of the MID.

Definition 5.6.7 (EUMarginalisation). For i ∈ V, let ūi+1 be a conditional expected
utility vector and pi a probability vector. The EUMarginalisation, ΣEU, between ūi+1

and pi is defined as

1. ū′i+1,p
′
i ←−EUDuplicationP(·);

2. I ′i × (ū′i+1 ◦ p′i), where × denotes the standard matrix product and I ′i is a matrix
with ci+1si/ri ∈ Z≥1

2 rows and ci+1si columns defined as

I ′i =
( (

1 0 · · · 0
) (

0 1 · · · 0
)
· · ·

(
0 0 · · · 1

) )T

where 1 and 0 denote row vectors of dimension ri with all entries equal to one and
zero respectively and si =

∏
k∈{Πi\Bi+1} rk.

The last operation is a maximisation of ūi+1 over the space Yi, i ∈ D, for any element
of YΠi .

Definition 5.6.8 (EUMaximisation). For i ∈ D, let ūi+1 be a conditional expected
utility vector. An EUMaximisation over Yi, maxEU

Yi
, is defined by the following steps:

1. set y∗i (π) = arg maxYi
ūi+1, for π ∈ YΠi;

2This number is integer since ci+1 = riai+1, for an ai+1 ∈ Z≥1.
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k1 = 0.2, h = 2.6, ψ311 = 0, p5101 = 0.9
k2 = 0.3, ψ20 = 1, ψ300 = 1, p5110 = 0.2, p6100 = 0.3
k3 = 0.5, ψ21 = 0, ψ310 = 0.4, p5100 = 0.6

Table 5.3: Numerical specification of a subset of the indeterminates associated to the
diagram of Figure 2.18.

2. I∗i × ūi+1, where I∗i is a matrix with ci+1/ri ∈ Z≥1 rows and ci+1 columns defined
as

I∗i =
((

ey∗i (1) 0 · · · 0
) (

0 ey∗i (2) · · · 0
)
· · ·
(

0 · · · ey∗i (ci+1/ri)

))T

where ey∗i (π), π ∈ [ci+1/ri], is a row vector of dimension ri whose entries are all
zero but the one in position y∗i (π), which is equal to one.

The first item in Definition 5.6.8 is the critical part of the operation EUMaximisation. It
is not the scope of this thesis to present a methodology to identify such expected utility
maximising decisions. We simply assume that these can be found. However we note that,
within our symbolic approach, polynomial optimisation and semi-algebraic methods can
be used to determine such optimal decisions [Parrilo, 2000]. Once these are identified,
EUMaximisation drops the polynomials associated with the non optimal course of action.
Alternatively, we can think of the evaluation of the MID as the computation of the
expected utility polynomial of a specific policy. This is for example all that can be done
whenever decision rules have been committed to a priori. In this case, EUMaximisation

deletes the decisions that are not adopted within the given policy. The Maple function
EUMaximisation in Appendix E calls a subfunction Maximise, which randomly picks
optimal decisions.

Example 5.6.9. To illustrate the working of EUMaximisation, suppose for the MID
in Figure 2.18 that a decision centre has provided the specifications summarised in Ta-
ble 5.3 together with the qualitative beliefs p5111 = p6011 and p6010 = p6001. These in
general cannot be implemented in a non-symbolic approach to decision making problems.
By plugging in these numeric values and constraints into equations (5.6.3) and (5.6.4),
the centre would choose to evacuate (Y4 = 1) for combinations of the parameters lead-
ing to the coloured areas of Figure 5.1, assuming Y3 = 1 in Figure 5.1a and Y3 = 0
in Figure 5.1b. The geometric structure of the regions often gives insights about the
maximisation process. Assuming Y3 = 1, if the members of the centre believe that
ψ301, p5111, p6001 ∈ [0, 1/2], then Figure 5.1a shows that evacuation will be the optimal
choice. Conversely, when Y3 = 0, such a range for the indeterminates would not uniquely
identify an optimal course of action. We can however envisage the algorithm to work
over the two sub-regions of Figure 5.1b separately. The algorithm would then output
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(a) Optimal regions in the case Y3 = 1. (b) Optimal regions in the case Y3 = 0.

Figure 5.1: Regions determining the combinations of parameters leading to an optimal
decision of evacuating (coloured regions) and not evacuating (white regions) for the
evaluation of the diagram in Figure 2.18 given the partial numeric specification in

Table 5.3.

different optimal courses of action for different combinations of the unknown parameters.
We plan to develop a systematic methodology to address these issues in later work.

Each of the above three operations changes the conditional expected utility vectors and
their entries in a specific way we formalise below.

Proposition 5.6.10. For i ∈ [n], let ūi+1 be a conditional expected utility vector whose
entries have the polynomial structure of equation (5.6.2) and let uj be the vertex preceding
Yi+1 in the DS. Then, in the notation of Theorem 5.6.3,

• maxEU
Yi
ūi+1 has dimension ci+1/ri and its entries do not change polynomial struc-

ture;

• ūi+1 +EU ψj has dimension ci+1s
U
i , where sUi =

∏
k∈{Pj\Bi+1} rk, and each of its

entries includes r(i+1)ba monomials of degree d(i+1)ba, r(i+1)ba monomials of degree
d(i+1)ba + 3 and one monomial of degree 2;

• ūi+1ΣEUpi has dimension ci+1si/ri, where si =
∏
k∈{Πi\Bi+1} rk, and each of its

entries includes rir(i+1)ba monomials of degree d(i+1)ba + 1.

This result directly follows from the definition of the above three operations whose effect
on the polynomials associated to the diagram in Figure 2.18 is illustrated below.

5.6.1.3 A Fast Evaluation Algorithm. The algorithm for the evaluation of MIDs
is given in Algorithm 5.6.1. This receives as input the DS of the MID, S say, the sets
J, V and D, and the vectors p = (pi)T

i∈[n], ψ = (ψj)T
j∈[n] and k = (h, kj)T

j∈[m]. We
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Algorithm 5.6.1: SymbolicExpectedUtility(J, S,p,ψ,k,V,D)

ūn+1 = (0) (1)
for k ← n downto 1 (2)

do



for l← m downto 1 (3)

do



if k = jl (4)

then


if k ∈ D (5)

then
{
ūk = maxEU

Yk
(ūk+1 +EU ψl) (6)

else
{
ūk = pk ΣEU (ūk+1 +EU ψl) (7)

else if k ∈ D (8)
then

{
ūk = maxEU

Yk
ūk+1 (9)

else
{
ūk = pk ΣEU

Yk
ūk+1 (10)

return (Ū1) (11)

implemented this algorithm in the SymbolicExpectedUtility function in Appendix
E.3. This corresponds to a symbolic version of the backward induction procedure over
the elements of the DS explicated in Proposition 2.5.10. At each inductive step, a utility
vertex is considered together with the variable that precedes it in the DS.

In line (1) the conditional expected utility ūn+1 is initialised to (0). Lines (2) and
(3) index a reverse loop over the indices of both the variables and the utility vertices
respectively (starting from n and m). If the current index corresponds to a variable
preceding a utility vertex in the DS (line 4), then the algorithm jumps to lines (5)-
(7). Otherwise it jumps to lines (8)-(10). In the former case, the algorithm computes,
depending on whether or not the variable is controlled (line 5), either an EUMaximisation

over Yk (line 6) or an EUMarginalisation (line 7) with pk, jointly to an EUMultiSum

with ψl. In the other case, EUMaximisation and EUMarginalisation operations are
performed without EUMultiSum.

Example 5.6.11. For the MID in Figure 2.18 the SymbolicExpectedUtility function
first considers the random vertex Y6 which precedes the utility vertex U3 and therefore
first calls the EUMultiSum function. EUDuplicationPsi in this case entails that ū7 is
duplicated four times and

Ū7 +EU ψ3 =
(
k3ψ11 k3ψ01 k3ψ10 k3ψ00

)T
. (5.6.5)

3Note that the inputs of these functions in Maple are different. The ones chosen here are able to
more concisely report their working.
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Then, the rhs of Equation (5.6.5) needs to be duplicated via EUDuplicationP and

ūT
6 = I ′6 × ūt6 ◦ p6 = (k3ψ31jp61ij + k3ψ30jp60ij)T

i,j∈[1]0 ,

where ūt6 is equal to the duplicated version of the rhs of equation (5.6.5). The vector ū6

has dimension four and its entries include two monomials of degree 3. Since the random
vertex Y5 is the unique parent of U2 the SymbolicExpectedUtility function follows the
same steps as before. EUMultiSum is first called which gives as output

ū6 +EUψ2 = h · k2 · ū6 ◦
(
ψ21 ψ20 ψ21 ψ20

)T
+ ū6 + k2 ·

(
ψ21 ψ20 ψ21 ψ20

)T

The polynomial ū6 +EUψ2 is the sum of two monomials of degree 3 inherited from ū6, of
two monomials of degree 6 (from the first term on the rhs of 5.6.11) and one monomial
of degree 2 (from the last term on the rhs of 5.6.11). Its dimension is equal to four (i.e.
no EUDuplicationPsi is required). EUMultiSum manipulates the conditional expected
utility vector according to Proposition 5.6.10. Then, the EUMarginalisation function
computes

ū5 = I ′5 ×
((

ū6 +EU ψ2 ū6 +EU ψ2
)T
◦ p5

)
.

Each entry of ū5 has twice the number of monomials of the entries of ū6 +EU ψ2 and
each monomial of ū5 has degree d+1, where d is the degree of each monomial of ū6 +EU

ψ2 (whose entries are homogeneous polynomials). These vectors also have the same
dimension. Thus, this EUMarginalisation changes the conditional expected utility
vector according to Proposition 5.6.10. The polynomial in a generic entry of ū5 was
shown in equations (5.6.3)-(5.6.4).

The algorithm then considers the controlled variable Y4. Since 4 6∈ J, Y4 is not the
argument of a utility function with the highest index and therefore the algorithm calls
the EUMaximisation function. Suppose the optimal decisions are identified to be Y4 = 1
when Y3 = 1 and Y4 = 0 when Y3 = 0. The evaluation would then suggest that
the population is evacuated whenever a high level of deposition is observed and that
people are not evacuated if the deposition is low. Then EUMaximisation would return
ū4 = I∗4 × ū5, where I∗4 is a 2 × 4 matrix with ones in positions (1, 1) and (2, 4) and
zeros otherwise. Proposition 5.6.10 is respected since the entries of ū4 have the same
polynomial structure of those of ū5 and ū4 has dimension 2.

The SymbolicExpectedUtility function then applies in sequence the operations defined
in Section 5.6.1.2. For the MID in Figure 2.18 it sequentially computes the following
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quantities:

ūt3 = h · k1 · ū4 ◦ψ1 + ū4 + k1 ·ψ1, ū3 = I
′
3 ×

((
ūt3 ūt3 ūt3 ūt3

)T
◦ p3

)
,

ū2 = I
′
2 × (ū3 ◦ p2) , ū1 =

(
1 0

)
× ū2,

assuming the optimal initial decision is Y1 = 1.

Interestingly, using the new algebra we introduced in Section 5.6.1.2, the evaluation of
an MID can be written as a simple algebraic expression. For example, the evaluation of
the MID in Figure 2.18 can be written as

Ū1 = maxEU
Y1

(
p2 ΣEU

(
p3 ΣEU

(
ψ1 +EU maxEU

Y4

(
p5 ΣEU(ψ2 +EU (p6 ΣEUψ3))

))))

and this polynomial can be evaluated with SymbolicExpectedUtility.

Although we have developed in this section a symbolic approach for the evaluation of
extensive form MIDs, in Leonelli et al. [2015a] we formalise both the symbolic and the
polynomial interpretation of the manipulations (edge reversal and barren node removal)
of non extensive form diagrams. In that paper we further deduce the polynomial and
symbolic interpretation of the sufficiency theorem of Smith [1989a], that can be used to
greatly simplify the evaluation of an MID by deleting some of its vertices.

5.6.1.4 Asymmetric Decision Problems. In Section 2.5.2 we claimed that most
of the graphical representations of asymmetric decision problems lose the transparency
associated to IDs. In this section we start to demonstrate one of the great advantages
of symbolic approaches, namely that the complexity of both the polynomial structure
and the symbolic definition of an asymmetric problem are simpler than the ones using
a symmetric embedding of the problem. We discuss this feature in greater length in
Section 5.6.2 below.

Here we characterise an asymmetry between two chance nodes which, depending on
the stage of the evaluation, may entail setting equal to zero monomials in either some
or all rows of the conditional expected utility vector. This therefore implies that the
polynomial structure of the conditional expected utility vectors and at times also their
dimension change. We present the result for elementary asymmetries of the following
form: if Yi = yi then Yj 6= yj , i 6= j (see Section 2.5.2 for an example of such asym-
metries). Composite asymmetries are unions of simple asymmetries and the features of
the conditional expected utility vectors in more general cases can be deduced through a
sequential application of Theorem 5.6.12.
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Theorem 5.6.12. Let G be an MID, Yi and Yj be two random variables with j > i, Ux be
the first utility node that follows Yj in the DS. Assume the asymmetry Yi = yi ⇒ Yj 6= yj

holds and that k and z are the highest indices such that j ∈ Bk and i ∈ Bz and assume
k > j. Then

• for t ∈ [z]j, each row of ūt has
∏
s∈Bt\{i∪j} rs rows with no monomials;

• for t ∈ [j]i, each row of ūt has
∏
s∈Bt\{i} rs rows with polynomials of a different

structure. Specifically, these consists of, in the notation of Theorem 5.6.3, r′tba
monomials of degree dtba, where for a ∈ [m]x−1 and b ∈ [a]l−1

r′tba =
((

a− x
b− l

)
− 1

) ∏
s∈[ja]t−1

rs/rj ;

• for t ∈ [i], each row of ūt has in the notation of Theorem 5.6.3 r′′tba monomials of
degree dtba, where for a ∈ [m]x−1 and b ∈ [a]l−1

r′′tba =
((

a− x
b− l

)
− 1

) ∏
s∈[ja]t−1

rs/(rj · ri).

The proof of this theorem is provided in Appendix A.4.4. Corollary 5.6.13 gives a
characterisation of simple asymmetries between any two variables, whether they are
controlled or non-controlled. This follows from Theorem 5.6.12 since controlled variables
can be thought of as a special case of random ones.

Corollary 5.6.13. In the notation of Theorem 5.6.3 and under the assumptions of
Theorem 5.6.12, with the difference that Yi and Yj are two variables, controlled or non-
controlled, we have that

• for t ∈ [z]j, each row of ūt has
∏
s∈Bt\{i∪j} rs rows with no monomials;

• for t ∈ [j]i, ūt has at most
∏
s∈Bt\{i} rs rows with polynomials of a different struc-

ture. Specifically, these consists of between r′tba and rtba monomials of degree dtba,
for a ∈ [m]x−1 and b ∈ [a]l−1;

• for t ∈ [i], some rows of ūt have a number of monomials of degree dtba between
r′′tba and rtba, for a ∈ [m]x−1 and b ∈ [a]l−1.

Example 5.6.14 (Example 2.5.11 continued). Consider the asymmetric problem de-
scribed in Figure 2.19. The symbolic imposition of the asymmetric constraints reduces
from ten to three the number of monomials in ū5 which becomes

k3ψ311p6111p511i + k2ψ21p511i + hk2k3ψ311ψ21p6111p511i, i ∈ [1]0.
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Suppose the EUMaximisation suggested that Y4 = 0 is optimal if Y3 = 1 and that Y4 = 1
is preferred if Y3 = 0. The entry of ū3 for which Y2 = 1 and Y1 = 1 can be written as

∑
i,∈[1]0

((k2ψ21 + k3ψ311p6111(1 + hk2ψ21))p5110p3011 + k1ψ1ip3i11

+ hk1k3ψ11p5101p3111((1 + k2ψ21)ψ3j0p6j10)).

This polynomial consists of only nine monomials. This, compared with the number of
monomials in the symmetric case, 42, means that even in this small problem we obtain
a reduction of the number of monomials by over three quarters.

So the example above illustrates that under asymmetries the polynomial representation
is simpler than standard methods but still able to inform decision centres about the nec-
essary parameters to elicit. Finally, it is possible to develop a variant of Algorithm 5.6.1
which explicitly takes into account the asymmetries of the problem during its evaluation.
Note that this approach would be computationally even more efficient, since it would
require the computation of a smaller number of monomials/polynomials.

5.6.2 A Differential Approach to Inference in Staged Trees

5.6.2.1 Symbolic Definition of Staged Trees. As discussed in Section 5.1, sym-
bolic methods have proved useful in the study of BNs, despite coming with a considerable
computational cost. In this section we develop a symbolic approach for staged trees [see
e.g. Smith and Anderson, 2008, and Section 2.3.2.6] and we demonstrate that such dif-
ficulties are eased, because of the more intuitive parametrisation associated to these
models. In addition, because of the wide variety of possible hypotheses they embody,
staged trees are necessarily models over much smaller state spaces than BNs. Since
the size of the model space is the main computational issue for symbolic approaches
associated with BNs, it follows that trees can be very practical contexts to investigate
symbolic inferential queries.

Borrowing ideas from Pistone et al. [2001], we define the interpolating polynomial of a
staged tree.

Definition 5.6.15. Let T = (V,E) be a staged tree with primitive probabilities θe,
e ∈ E, and set of root-to-leaf paths Λ(s0, T ). We call Λ(e) = {r ∈ Λ(s0, T ) | e ∈ E(r)}
an edge centred event, and set λe(r), for e ∈ E, to be an indicator of r ∈ Λ(e). We call

cT (θ, λ) =
∑

r∈RT

∏
e∈E(r)

λe(r)θe
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the interpolating polynomial of T .

The interpolating polynomial is a sum of probabilities of atomic events with indicators for
certain conditional events happening or not happening. Even though all these unknowns
sum to one, in our symbolic approach we treat them just like indeterminates. Note
that the indicators λe(r) on the edges e ∈ E(r) are associated to the (conditional) event
represented by e, having probability θe. This notation is apparently redundant, but turns
out to be useful below. We observe that this redundancy is one of the great advantages
of a staged tree: whilst Darwiche [2003] needs to compute conditional probabilities of all
compatible parent structures of an event, which is a rather obscure concept in a symbolic
framework, and Castillo et al. [1996] computes the product space of any indeterminates’
combination regardless of their meaning, a tree visualisation of our model gives us the
necessary structure immediately: events can be simply read from the paths in the graph.

Example 5.6.16. The interpolating polynomial of the tree in Figure 2.7 (on page 150),
not considering the underlying stage structure, is equal to (for ease of notation we omit
the indicator functions)

c′T (θ) = θ01θ11θ31 + θ01θ11θ30 + θ01θ10θ41 + θ01θ10θ40 + θ00θ21 + θ00θ20. (5.6.6)

When plugging in the conditional independence constraints, we obtain the interpolating
polynomial of the staged tree as

cT (θ) = θ01θ11θ31 + θ01θ11θ30 + θ01θ10θ31 + θ01θ10θ30 + θ00θ11 + θ00θ10, (5.6.7)

= θ01(θ11(θ31 + θ30) + θ10(θ31 + θ30)) + θ00(θ11 + θ10). (5.6.8)

Conversely, the interpolating polynomial of the BN representation of the problem de-
scribed by this staged tree, ignoring the conditional independence structure, equals

cBN(θ) =θ01θ11θ31 + θ01θ11θ30 + θ01θ10θ41 + θ01θ10θ40

+ θ00θ21θ51 + θ00θ21θ50 + θ00θ20θ61 + θ00θ20θ60,
(5.6.9)

We now look at interpolating polynomials from an algebraic viewpoint. Because of the
product space structure of the sample space of a BN, the interpolating polynomial of
a BN with n vertices equals the sum of monomials each of which is of degree 2n and
so homogeneous. Moreover, the stage structure of a tree associated to a BN model as
in Figure 2.8 is such that no two vertices along the same directed path are in the same
stage, in fact stages exist only along orthogonal cuts [Thwaites and Smith, 2015]. Thus,
the interpolating polynomial of a BN is also square-free. This is shown for instance
by the interpolating polynomial cBN in equation (5.6.9), an homogeneous polynomial of
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degree 3 whose number of terms equals the number of paths in its tree representation.
Importantly this polynomial has been simply read from the event tree by first multiplying
over all primitive probabilities along one root-to-leaf path, and then summing over all
of these paths. This is a lot easier done using Figure 2.8 (on page 36) than in the
associate BN representation, where we would have had to sum over compatible parent
configurations.

Conversely, interpolating polynomials of staged trees are not necessarily homogeneous
and square-free. For instance, the interpolating polynomial in equation (5.6.7) is now
inhomogeneous with total degree 3 and monomial terms having degree 2 and 3. Although
our staged tree examples have a square-free structure, non multilinear interpolating
polynomials arise from a tree where two vertices in the same root-to-leaf path are in the
same stage [as shown in Görgen et al., 2015]. For the purpose of this section we focus
only on staged trees whose interpolating polynomial is square-free.

Notice that cT can be easily factorised in equation (5.6.8) by simply following the struc-
ture of the underlying graph. In Brandherm and Jameson [2004] polynomials of this
type are called factored. This representation entails great computational advantages
since the compilation into an AC is almost instantaneous. Whilst for BNs the factored
representation might be difficult to obtain, it comes almost for free in tree models.

We observe that the graphical simplicity of staged tree models in comparison to an
uncoloured tree or trees associated to BNs is also reflected algebraically: the polynomial
in (5.6.7) has fewer indeterminates than the one in (5.6.6) and a lot fewer than the
polynomial associated to a tree which is derived from a BN in (5.6.9). This is because
in the BN the redundancy of atoms gives rise to redundant terms.

The definition of interpolating polynomials enables us to compute the probability of any
event associated to a tree.

Lemma 5.6.17. For any event A represented by a set of root-to-leaf paths RA in a
staged tree T ,

P(A) =
∑

r∈RA

∏
e∈E(r)

λe(r)θe = cT (θ, λ|RA
),

where λ|RA
indicates that λe(r) = 1 for all e ∈ E(r) with r ∈ RA, and else zero.

This result holds since the probability of an event is equal to the sum of the probabilities
of the associated root-to-leaf paths.

Example 5.6.18. Suppose we are interested in calculating the probability of political
disruption. This is captured by the set RA = Λ(e31) ∪ Λ(e41) corresponding to all root-
to-leaf paths going through an edge labelled ‘yes’, which translates in summing all terms
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in (5.6.7) including θ31. Therefore P(A) = θ01θ11θ31 + θ01θ12θ31, again omitting the λ
indicators.

5.6.2.2 The Differential Approach. We are now able to provide a probabilistic
semantic, just as Darwiche [2003] for BNs, to the derivatives of polynomials associated
to staged trees. For ease of notation we let in this section λe = λe(r).

Proposition 5.6.19. For equally coloured edges e ∈ E and an event A represented by
the root-to-leaf paths RA, it holds that

P(Λ(e) | A) = 1
cT (θ, λ|RA

)
dcT (θ, λ|RA

)
dλe

, P(Λ(e), A) = θe
dcT (θ, λ|RA

)
dθe

. (5.6.10)

Proof. First consider the equation on the left. Recall that P(Λ(e) | A) = P(Λ(e),A)
P(A) . From

Lemma 5.6.17 it follows that the denominator is as in (5.6.10). For the numerator note
that

dcT (θ, λ|RA
)

dλe
=

d
∑
r∈RA

∏
e∈E(r) λe(r)θe
dλe

=
∑

r∈Λ(e)∩RA

∏
a∈E(r)

λaθa = P(Λ(e), A),

from which the equation on the left follows. Finally note that

θe
dcT (θ, λ|RA

)
dθe

= dcT (θ, λ|RA
)

dλe
,

since λe is equal to either one or zero, depending on whether a root-to-leaf path in RA

goes through e or not.

Notice that the derivatives of tree polynomials have the exact same interpretation of the
ones of BNs as in Darwiche [2003]. Here we restricted our attention to square free staged
trees but analogous results hold in the generic case: each monomial with indeterminates
λe and θe of degree higher than one would need to be differentiated a number of times
equal to the degree of that indeterminate.

Proposition 5.6.20. In the notation of Proposition 5.6.19, the following holds for
e, e1, e2 ∈ E:

P(Λ(e1),Λ(e2) | A) = 1
cT (θ, λ|RA

)
∂2cT (θ, λ|RA

)
∂λe1∂λe2

, (5.6.11)

P(Λ(e1),Λ(e2), A) = θe1θe2
∂cT (θ, λ|RA

)
∂θe1∂θe2

, (5.6.12)

P(A | Λ(e)) = ∂2cT (θ, λ|RA
)

∂θe∂λe
. (5.6.13)
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Proof. Equations (5.6.11) and (5.6.12) follow applying twice equation (5.6.10). To prove
(5.6.13), note that

P(A | Λ(e)) = P(A,Λ(e))
P(Λ(e)) = dcT (θ, λ|RA

)
dλe

1
θe

= θe
dcT (θ, λ|RA

)
dθe

1
θe

= d2cT (θ, λ|RA
)

dθedλe
.

It is easy to then deduce from Proposition 5.6.20 the probabilistic meaning of higher
order derivatives.

Importantly, in the staged tree model class derivatives can be associated to causal propo-
sitions. Note that such a result does not hold in general for the polynomials describing
BN probabilities.

Proposition 5.6.21. Suppose the staged tree is believed to be causal as in Thwaites
et al. [2010]. Then in the notation of Proposition 5.6.20,

P(A || Λ(e)) = ∂2cT (θ, λ|RA
)

∂θe∂λe
, (5.6.14)

where P(A || Λ(e)) is the probability of the event A when the system is forced to go
through the edge e.

Proof. This follows noting that in a causal framework P(A || Λ(e)) = P(A | Λ(e)).

Note that all the quantities in (5.6.10)-(5.6.14) can be used in sensitivity analysis. For
instance we could investigate the changes in probability estimates when the system is
set to be in a certain scenario of interest.

Example 5.6.22. We now compute a set of derivatives of the interpolating polynomial
cT in (5.6.7) with respect to λ31 and θ31 to perform probabilistic inference over the event
A of political disruption. Thus, we consider the edge e = (v3, v7) and

1
cT (θ, λ|RA

)
dcT (θ, λ|RA

)
dλe

= θ01θ11θ31 + θ01θ12θ31
θ01θ11θ31 + θ01θ12θ31

= 1, (5.6.15)

θe
dcT (θ, λ|RA

)
dθe

= θ13(θ01θ11 + θ01θ12) = P(A), (5.6.16)

d2cT (θ, λ|RA
)

dθedλe
= θ01θ11 + θ01θ12. (5.6.17)

Observe that equation (5.6.15) is equal to one since every path associated to the event
A must go through e. From the same argument it follows that equation (5.6.16) is equal
to P(A). Equation (5.6.17) is a simple consequence of Bayes theorem, which can be
checked algebraically.
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Figure 5.2: The arithmetic circuit of the polynomial in equation (5.6.7).

5.6.2.3 Trees as Circuits. The previous sections have introduced a comprehensive
symbolic inferential toolbox for trees, based on the computation of the interpolating
polynomial and its derivatives. In Darwiche [2003] it is shown that an efficient method
to compute such polynomials is by representing them as an AC. This is a DAG whose
leaves are the indeterminates and the inner nodes are labelled by multiplication and
summation operations. The size of the circuit is measured by its number of edges.

ACs of staged tree polynomials are smaller in size than the ones associated to BNs
for two reasons: first, a tree might have fewer root-to-leaf paths (as in our example);
second, there can be less indeterminates because unfoldings with probability zero are not
included in the model and coloured labels further decrease the number of indeterminates.
Therefore, in asymmetric settings we can expect computations to be much faster for trees
than BNs.

A major problem in the compilation of BNs polynomials consists of the identification
of the AC of smallest size. This usually entails the computation of the BN’s jointree
and the application of rather complicated algorithms [Darwiche, 2003]. We note here
that in tree models this is straightforward since the interpolating polynomial is naturally
factored.

Example 5.6.23. Notice that equation (5.6.8) can be rewritten as cT (θ) = θ01(θ11 +
θ12)(θ31 + θ31) + θ02(θ11 + θ12). This gives us the AC in Figure 5.2 where leaves with
the same parent are labelled by primitive probabilities from the same floret, and labels
belonging to leaves in the tree are first summed in the AC. It is easy to deduce that
the AC associated to the BN’s polynomial in equation (5.6.9) would be much larger
than the one in Figure 5.2. We note also that, whilst all the ACs deriving from BNs
in Darwiche [2003] are trees, ours are more generally DAGs. This is a consequence of
the more flexible stage structure associated to generic staged trees than the one of trees
depicting BNs.

5.7 Conclusions

In this chapter, after discussing the links between algebraic and symbolic inferential
methods, we have developed formal algebraic methods to investigate adequacy in IDSSs.
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We have defined new separation conditions consisting of certain polynomial relations and
demonstrated that these can guarantee adequacy and distributivity in general and in a
variety of examples. In particular, the application of such methods to the class of BN
models defined as DAG linear regressions lead us to deduce new formulae for the compu-
tation of moments of not only additive, but also multilinear, functions of random vectors
over an agreed DAG. We have then extended current symbolic inferential methods to
IDs and staged trees. For IDs we have defined a new symbolic representation of utilities,
introduced a new symbolic evaluation algorithm and discussed asymmetric constraints
in symbolic frameworks. Concerning staged trees, we have developed an inferential
approach based on the computation of the derivatives of probability polynomials.



Chapter 6

Conclusions

In this last chapter we first briefly summarise the main contributions of this work. A
more detailed discussion of the relevance of the results of the thesis is reported within
each of the previous chapters. Importantly, this thesis gives a number of possible research
directions that we discuss below. There are still many research avenues to explore and
we outline here some issues we are currently addressing.

Summary of the Contributions of the Thesis

In this thesis we have defined the statistical framework of the IDSS that coherently
aggregates the beliefs and preferences of separate panels of experts having different
expertise. We discussed in Chapter 3 when and how it is possible to coherently combine
both expert judgements and models into a unique entity and provided a variety of
examples of IDSSs. In Chapter 4 we then defined new propagation algorithms for the
computation of the expected utility of the policies supported by an IDSS. We developed
in Chapter 5 new separation conditions for the panels’ beliefs based on the algebraic form
of the IDSS expected utility. In that chapter we further discussed symbolic approaches
for decision making and inference in IDs and staged trees respectively.

In more details:

• Theorems 3.4.3 and 3.4.5, Lemma 3.4.7 and the results in Section 3.6 show that
the framework of IDSSs allows for distributed Bayesian inferences, generalizing
the standard Bayesian paradigm reviewed in Section 2.1. Specifically, we derived
in Section 3.6 independence conditions for a variety of graphical models which
generalize the standard independences over the parameter set reviewed in Chapter
2;
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• the expert judgement combinations of Faria and Smith [1997] assume each expert
has responsibility over the whole vertex set of an agreed BN or PCG model (see
Proposition 2.6.5). In Proposition 3.6.5 we generalized their combination rules to
cases where the experts partition the vertex set of an agreed graphical model;

• Lemma 3.5.2 and Theorem 3.5.5, using the newly notion of the natural comparator
d0, generalized the standard Perlean notion of causality reviewed in Section 2.3.4
and introduced new inferential routines. As specified in the above mentioned
results, the classic CBN model can be seen of an instance of an IDSS equipped
with the natural comparator;

• in Definition 4.1.8 we introduced the new class of compatible utility factorization
which exploits both generalized additive and utility independence, and can be rep-
resented by a specific subclass of the utility diagrams reviewed in Section 2.4.3.
This new class of utility models is then showed to enable for the distributed com-
putation of expected utilities in Theorem 4.1.13, which is also the first result to
our knowledge using the idea of partial utility independence in expected utility
computations;

• Section 4.3 then presents a variety of algorithms to compute these expected utilities
in different situations, e.g. dynamic and non-dynamic. We further provided a long
list of examples of these computations in practice in Section 4.4;

• we then focused in Chapter 5 on the computation of expected utilities for particular
types of Bayesian network models and introduced a new procedure to quickly
compute these scores in closed form. As shown in Lemma 5.5.6 and Proposition
5.5.10 the new concept of algebraic substitution together with the application of
the multinomial theorem allowed us to instantly derive a polynomial form for
expected utilities associated to BN models;

• the independence conditions for the distributed multi-expert inference routines in
IDSSs were shown to be too strong for the computations of the expected utilities
of the point above; we therefore identified in Theorems 5.5.8 and 5.5.13 minimal
sets of independences for the computations of these expected utilities;

• lastly, we introduced two new symbolic inferential frameworks: one for IDs, where
we symbolically defined utility parameters and deduced a polynomial expression
for expected utilities; and one for CEGs and staged trees, where we showed that
by computing certain derivatives of the polynomial defining the model, a user can
answer a variety of inferential queries.
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Future Work

Missing Data and Approximated Systems

We showed in Chapter 3 that evidence coming from certain observational and experi-
mental studies can be introduced in the IDSS whilst retaining the distributivity of the
systems. However often it could only be available data whose likelihood is not panel
separable. This might be for example due to missing observations. We note here that
there are two related practical solutions to this problem:

• panels can accommodate only a subset of the data into the system respecting panel
separability. This gives the basis for a framework to analyse the system;

• methods can be developed where the distributivity property can only be approxi-
matively satisfied.

In the latter case we would then need to introduce measures to quantify the effects of
both the approximation of distributivity and the loss of data. One such measure could
be for example the variation in expected utility defined as

|ū(d | x)− ū(d | x′)|,

where x is a dataset with non panel separable likelihood, x′ is a subset of x for which
the panel separability property holds and ū(d | x) is the expected utility after the
introduction of data. If the above measure is small, then the extent of not including
observations that break distributivity will be almost irrelevant. This measure could then
be embedded into a formal methodology of approximated decision support.

Non-Bayesian Approaches

The Bayesian framework provides a coherent and established methodology to model and
reason about uncertainty. Therefore we claim that the collective should always strive to
define their beliefs as subjective probability statements. However there are cases where
members of panels will simply not agree on a unique probability specification. We could
envisage the use of a pooling operator to aggregate these beliefs, but again the experts
might disagree on the weights of such operator. There is therefore the need to develop
inferential methods within IDSSs outside of the Bayesian formalism to deal with these
situations.
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Belief functions [Dempster, 1968, Shafer, 1976] and imprecise probabilities [Walley, 1991]
represent possible candidates, since these do not require the experts to agree on a unique
specification. In particular credal networks [Cozman, 2000] can be used as an integrating
structure in these frameworks. These are DAGs defining for each vertex a credal set, a
set of probability distributions, instead of one only distribution as in BNs.

Real World Application of IDSSs

The focus of this thesis has been on developing a formal theory to aggregate expert
judgements in complex settings, as nuclear emergency management. Since a formal
theory is now in place we can start looking at developing these types of systems to
support actual decision making. One obvious domain of application would be nuclear
emergency management since, as we noted, Bayesian models for many of the modules of
any plausible network have been already defined. We are currently starting to develop
an IDSS to deal with food security issues. In this direction, Barons et al. [2014] built a
DBN to model the production of sugar.

Propagation in Group CEGs

The propagation algorithms we defined in Chapter 4, although working for a wide va-
riety of commonly used models, do not allow for asymmetric conditional independence
statements to be explicitly represented. It would be therefore relevant to develop algo-
rithms for models exhibiting such an asymmetric structure, as for example CEGs. In
Section 3.6.1.7 we showed that these models can be part of the structural consensus of
an IDSS. We can therefore now build on the algorithm of Thwaites et al. [2008] to take
into account the underlying multi-expert structure of the graph.

Dynamic and Multivariate Algebraic Substitution

Algebraic substitutions have proved extremely powerful in both computing conditional
expected utilities and moments of functions over an underlying DAG. These substitutions
work for non-dynamic models whose vertices are univariate random variables. Given
the often geographic nature of the problems IDSSs aim at addressing, there is a need to
generalise such recursions to the multivariate case. A natural framework where this could
be achieved is by representing probabilities as tensors [see e.g. McCullagh, 1987, for a
discussion of their use in statistics]. Furthermore algebraic substitutions can provide the
basis for moment forecasting in ‘polynomial MDM models’, generalising the recursions
of Queen et al. [2008] that forecast the covariances of an LMDM.
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Symbolic Continuous IDs

In Section 5.6.1 we introduced a symbolic definition of IDs for discrete decisions and
variables. This formalism can be rather straightforwardly extended to continuous IDs.
A symbolic evaluation algorithm for these models would then use the idea of algebraic
substitution to compute expected utilities of decision nodes. Madsen and Jensen [2005]
developed, in a non-symbolic framework, an evaluation algorithm for continuous IDs
embedding additive utility factorisations with quadratic marginal utilities functions.
This can easily identify optimal decisions since the associated expected utility has a
unique maximum. We have started developing similar recursions in a very wide class of
IDs with multilinear and polynomial utilities, where in addition a compliance error is
associated to every decision node. Just as in the discrete case, we can then implement
such an algorithm in a computer algebra system.

Asymmetric IDs

In Section 5.6.1 we briefly discussed the imposition of asymmetric constraints in IDs. We
also noted that great computational advantages would be achieved if these constraint
were implemented during the evaluation process. We are planning to develop such a
methodology by starting looking at decision circuits [Bhattacharjya and Shachter, 2007,
2012], a graphical representation of asymmetric problems through a variation of an AC.

Computer Algebra and Sensitivity Analysis in Trees

The symbolic definition of probabilities of BN models has given rise to a large body of lit-
erature on formal symbolic sensitivity analyses [see e.g. Chan and Darwiche, 2001, 2004].
Having symbolically defined probabilities in staged trees, we can now start developing
sensitivity analyses techniques tailored to the structure of the staged tree polynomials.
Alongside these theoretical advances, we are looking to implement the symbolic defini-
tion of staged trees in a computer algebra system to widen the use of such models in
practice.
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Proofs

A.1 Proofs of Chapter 2

A.1.1 Proof of Proposition 2.5.10

We develop the proof via backward induction over the random and decision vertices of
the MID, starting from Yn. Define, for i ∈ [n],

ūi =
∫
Y[n]V

i−1

max
Y[n]D

i−1

∑
I∈P0([m])

hnI−1∏
i∈I

kiui(yPi)f
(
y[n]Vi−1

| yΠ[n]V
i−1

)
dy[n]Vi−1

,

where [n]Vi−1 = [n] \ [i− 1] ∩ V, [n]Di−1 = [n] \ [i− 1] ∩ D and Π[n]Vi−1
= ∪j∈[n]Vi−1

Πj .

The DM’s preferences are a function of Yn only through kmum(yPm), since by construc-
tion n = jm ∈ J. Therefore, this quantity can be either maximised or marginalised as
in equation (2.5.2) to compute ūn(yBn). Note that Bn includes only the indices of the
variables ūn formally depends on, since Bn = Pm \n, if n ∈ D, whilst Bn = Pm ∪Πn \n,
if n ∈ V. Then

ūn =
∑

I∈P0([m])
hnI−1∏

i∈I
(1{i 6=n}kiui(yPi) + 1{i=n}ūi(yBi)).

Now consider Yn−1. If n− 1 6∈ J, then ūn is a function of Yn−1 only through ūn. There-
fore maximisation and marginalisation steps can be computed as in equation (2.5.5) to
compute ūn−1(yBn−1). Again Bn−1 includes the indices of the variables ūn−1 formally de-
pends on, since Bn−1 = Pm\{n, n−1}, if n, n−1 ∈ D, Bn−1 = Pm∪Πn∪Πn−1\{n, n−1},
if n, n−1 ∈ V, Bn−1 = Pm ∪ Πn−1 \ {n, n−1}, if n ∈ D and n−1 ∈ V, Bn−1 =
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Pm ∪Πn \ {n, n−1}, if n ∈ V and n−1 ∈ D. Then

ūn−1 =
∑

I∈P0([m])
hnI−1∏

i∈I
(1{i 6=n}kiui(yPi) + 1{i=n}ūi−1(yBi−1)).

Conversely, if n− 1 ∈ J, ūn is potentially a function of Yn−1 through both um−1(yPm−1)
and ūn(yBn) and note that ūn can be written in this case as

∑
I∈P0([m−2])

hnI−1∏
i∈I

kiui + u′m−1 +

 ∑
i∈P0([m−2])

hni−1∏
i∈I

kiui

u′m−1,

where

u′m−1 = hkm−1um−1(yPm−1)ūn(yBn) + km−1um−1(yPm−1) + ūn(yBn).

Therefore, optimisation and marginalisation steps can be performed over u′m−1 as spec-
ified in equations (2.5.3) and (2.5.4) respectively. Then note that ūn−1 can be written
as

ūn−1 =
∑

I∈P0([m−2])
hnI−1∏

i∈I
kiui + ūn−1 +

 ∑
i∈P0([m−2])

hni−1∏
i∈I

kiui

 ūn−1

=
∑

I∈P0([m−1])
hnI−1∏

i∈I
(1{i 6=n−1}kiui(yPi) + 1{i=n−1}ūi(yBi)).

Now for a j ∈ [n−2] and assuming with no loss of generality that k is the index of a
utility vertex such that jk−1 < j ≤ jk, we have that

ūj =
∑

I∈P0([k])
hnI−1∏

i∈I
(1{i 6=j}kiui(yPi) + 1{i=j}ūi(yBi)).

Therefore, at the following step, when considering Yj−1, we can proceed as done with
Yn−1 by maximisation and marginalisation in equations (2.5.3)-(2.5.5) to compute ūj−1.
Thus, at the conclusion of the procedure, ū1 yields the expected utility of the optimal
decision.

A.2 Proofs of Chapter 3

A.2.1 Proof of Theorem 3.4.3

Fix a d ∈ D and for simplicity suppress this dependence and the time index t. We need
show that under the conditions of the theorem at any time t and under any policy the
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SB will continue to hold panel independent beliefs, i.e. that, for i ∈ [m],

θi ⊥⊥ θi− | I+, (A.2.1)

and that when assessing θi, she will only use the information Gi would use if acting
autonomously in assessing the information she needs to deliver, i.e.

θi ⊥⊥ I+ | ICK , Iii. (A.2.2)

This is then sufficient for soundness and distributivity. Because even if all panellists
could share each other’s information then, given all panel beliefs, they would come
to the same assessment about the joint distribution of the relevant parameters: that
all panel subvectors are mutually independent of each other and that these margins will
simply be the margins of the associated panel were they making decisions autonomously.

The proof simply uses the semi-graphoid axioms of conditional independence in Propo-
sition 2.3.2. We start by proving the panel independence condition in (A.2.1). Note that
from common separability in equation (3.4.4) it follows that

θi ⊥⊥ θi− | ICK .
which combined with the separately informed condition in equation (3.4.2) through
strong decomposition and using the symmetric property of semi-graphoids axioms gives

θi− ⊥⊥ Iii,θi | ICK .

Using again strong decomposition and symmetric arguments, it follows that

θi ⊥⊥ θi− | Iii, ICK . (A.2.3)
Now the cutting condition in equation (3.4.3) together with equation (A.2.3) implies by
strong decomposition that

θi ⊥⊥ I∗,θi− | ICK , Iii. (A.2.4)

Then again by strong decomposition we have that

θi ⊥⊥ θi− | ICK , Iii, I∗.

Since Iii is a function of I∗ the above expression is equivalent to

θi ⊥⊥ θi− | ICK , I∗. (A.2.5)

Now the delegatable condition in equation (3.4.1) can be written as

I+ ⊥⊥ θi,θi− | ICK , I∗,

and using strong decomposition it follows that

I+ ⊥⊥ θi | ICK , I∗,θi− . (A.2.6)
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Combining via strong decomposition equations (A.2.5) and (A.2.6) and using the sym-
metry property we have that

θi ⊥⊥ I+,θi− | ICK , I∗.

Using again strong decomposition it follows that

θi ⊥⊥ θi− | ICK , I∗, I+,

which, since I∗ and ICK are functions of I+, can be written as equation (A.2.1). This
shows that panel independence directly follows from the four conditions of Definition
3.4.2.

To show that equation (A.2.2) holds, note that another implication of delegatability in
equation (3.4.1) by strong decomposition is that

θi ⊥⊥ I+ | ICK , Iii, I∗, (A.2.7)
where again we used the fact that Iii is a function of I∗. Now noting that by strong
decomposition equation (A.2.4) implies that

θi ⊥⊥ I∗ | ICK , Iii, (A.2.8)

it follows from equations (A.2.7) and (A.2.8) by strong decomposition that

θi ⊥⊥ I+, I∗ | ICK , Iii,

which, since I∗ is a function of I+ is equivalent to equation (A.2.2).

A.2.2 Proof of Theorem 3.4.5

Fix a policy d ∈ D and suppress for ease of notation this dependence. Under the initial
hypotheses, by Theorem 3.4.3

⊥⊥ i∈[m]θi | I0
CK , I

0
∗ ,

implying that the prior joint density can be written in a product form

π(θ) =
∏
i∈[m]

πi(θi).

It follows that under this admissibility protocol

π(θ | xt) =
∏
i∈[m]

πi(θi, ti(xt)),
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where from the form of the likelihood above

πi(θi, ti(xt)) ∝ li(θi | ti(xt))πi(θi).

By hypothesis πi(θi, ti(xt)) will be delivered by Gi and adopted by the SB. So the IDSS
is sound. In particular we can deduce, through the definition of panel separability and
the results of Theorem 3.4.3, that

⊥⊥ i∈[m]θi | ItCK , It+ ⇐⇒ ⊥⊥ i∈[m]θi | ItCK , It∗.

So we have separability a posteriori. Note that in the notation above

It+ =
{
ItCK , I

t
∗

}
=
{
I0
CK , I

0
∗ ,x

t
}
,

and for i ∈ [m] {
ItCK , I

t
ii

}
=
{
ItCK , I

0
ii, ti(xt)

}
.

Since by definition ti(xt) is known to Gi, i ∈ [m], the system is also delegatable. Finally
note that if

l(θ | xt) 6=
∏
i∈[m]

li(θi | ti(xt))

on a set A of non zero prior measure, then the conditional density πA(θ|xt) on A will
have the property that for all θ ∈ A

πA(θ|xt) 6=
∏
i∈[m]

πA,i(θi, ti(xt)),

where πA,i denotes the density delivered by panel Gi for the parameters it oversees in
A. This means that panel parameters are a posteriori dependent and so in particular
the density determined by the margins is not sound.

A.2.3 Proof of Theorem 3.6.9

Suppress for simplicity the dependence on d and the time index t. Since the IDSS is a
priori sound, the prior density can be written as

π(θ) =
∏
Ci∈C π(θCi)∏
S∈S π(θS) ,

where, by soundness, the distributions over the separators can be computed from the
any distribution over a clique containing that separator. Now soundness a posteriori is
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ensured iff the posterior can be uniquely written as

π(θ |x) =
∏
Ci∈C π(θCi | x)∏
S∈S π(θS | x) , (A.2.9)

where x = (xT
i )T
i∈[n]. Since each panel updates its distribution using its own independent

dataset, then it follows that the posterior over the cliques enjoys the factorisation at the
numerator of (A.2.9). Calling π∗i,S the posterior distribution of panel Gi over S, we then
have that

πi,S(θS | x) ∝ li(θS | ti(xti,S))πi(θS).

Therefore, from the above equation, the posterior distribution can be written as in
(A.2.9) iff, for every i such that S ⊂ Ci, the sufficient statistic over the separator is
equal for every panel Gi.

A.3 Proofs of Chapter 4

A.3.1 Proof of Theorem 4.1.13

We develop this proof via backward induction both through the vertices of the DAG
and through time. For the purpose of this proof define for t = T

ūT,i(yT1 , . . . ,yTi−1,y
T−1
i , . . . ,yT−1

n ,dT ) =
∫
Yi

· · ·
∫
Yn

uGfT,i · · · fT,ndyi(T ) · · · dyn(T ),

(A.3.1)
and note that ūT,1 ≡ ūT .

First, without any loss of generality, fix a policy dT . Then start the backward induction
from Yn(T ), which, by construction, is a leaf of the time slice DAG at time T . For a leaf,
Yi(T ) say, it follows from (4.1.5) that ũT,i = uGi (rAi) and note that consequently uGi is
a function of Yn(T ) only through ũT,n. Therefore ũT,n can then be simply marginalised
as in equation (4.1.6) to obtain ūT,n. Furthermore

ūT,n =
∑

i∈{Le\{n}}
uGi (rAi) + ūT,n

(
yTA′n ,y

T−1
n ,dT

)
. (A.3.2)

Now consider Yn−1(T ). The vertex associated with this random vector in the time slice
DAG is either the father of Yn(T ) or a leaf of the DAG. In the latter case, since by
construction n − 1 ∈ U , the exact same method followed for Yn(T ) can be applied to
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Yn−1(T ), and thus

ūT,n−1 =
∑

i∈{Le\{n,n−1}}
uGi (rAi) +

n∑
j=n−1

ūT,j
(
yTA′j

,yT−1
j ,dT

)
. (A.3.3)

If on the other hand Yn−1(T ) is the father of Yn(T ), then by construction Yn−1(T )
has only one son. Thus from equation (4.1.5) ūT,n ≡ ũT,n−1 and equation (A.3.2) is a
function of Yn−1(T ) only through ūT,n. In order to deduce ūT,n−1 only ũT,n−1 has to be
marginalised with respect to fT,n−1 and therefore

ūT,n−1 =
∑

i∈{Le\{n,n−1}}
uGi (rAi) + ūT,n−1

(
yTA′n−1

,yT−1
n−1 ,y

T−1
n ,dT

)
. (A.3.4)

We can note from equations (A.3.3) and (A.3.4) that ūT,n−1 consists of the linear com-
bination of two summations: the first over the leaves of the graphs with index j smaller
than n− 1 of utility terms uGj ; the second over the indices j bigger or equal than n− 1
of the terms ūT,j such that the father of Yj(T ) has an index smaller than n − 1 in the
time slice DAG. So for example in equation (A.3.3) the second summation is over both
n and n − 1 since the associated vertices are both leaves of the graphs. On the other
hand in equation (A.3.4) there is no term ūT,n since its father has index n − 1. More
generally, for j ∈ [n], ūT,j can be written as the linear combination of the following two
summations:

• the first over the indices i in Le ∩ [j−1] of uGi ;

• the second over the indices k in Bj = {k ≥ j : Fk < j} of ūT,k, where Fk is the
index of the father of Y T

k .

Therefore, for a j ∈ [n], we have that

ūT,j =
∑

i∈{Le∩[j−1]}
uGi (rAi) +

∑
k∈Bj

ūT,k
(
yTA′

k
,yT−1

k ,yT−1
Dnk

,dT
)
, (A.3.5)

where Dnk is the set of the indices of the descendants of Y T
k .

In particular for Y2(T ) we can write equation (A.3.5) as

ūT,2 =
∑
k∈S1

ūT,k
(
yT1 ,y

T−1
k ,yT−1

Sk
,dT

)
, (A.3.6)

since, by the connectedness of the time slice DAG, Y1(T ) is the father of all the vertices
whose father’s index is not [n] \ {1}. It then follows that equation (A.3.6) corresponds
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to ũT,1, as defined in equation (4.1.5), and therefore ūT can be written as in equation
(4.1.4). Thus Theorem 4.1.13 holds for time T .

Now, since Y1(T ) is the unique root of the time slice DAG, if i, j ∈ S1, then

A′i ∩A′j = {1}. (A.3.7)

Suppose that any vertex Yj(T ) , for j ∈ S1, is either connected by a path to one only
leaf of the DAG or is a leaf of the graph itself. Because of the identity in equation
(A.3.7) and because of the algebraic form of equation (A.3.6), which consists of a linear
combination of the terms ūT,j , for j ∈ S1, we can deduce that equation (4.1.7) holds for
the last time slice. Now, consider the case where one vertex Yj(T ) with index in S1 is
connected to more than one leaf. Equation (4.1.5) guarantees the existence of a vertex
Yi(T ), i > j, connected to both Yj(T ) and the above mentioned leaves, such that ũT,i
can be written as a linear combination of terms ūT,k, for which each of these terms is a
function of one of the leaves only. It therefore follows that equation (4.1.7) also holds in
this case.

Therefore equation (4.1.7) guarantees that ūT,1 can be written as a linear combination
of terms involving only variables in the same ancestral set. Since also the probability
factorisation does not change as formalised in Proposition 4.1.2, the exact same recur-
sions we explicated at time T can then be followed at time T −1 by substituting uGi with
ûT−1,i, i ∈ Le, in equations (A.3.1)-(A.3.5) and by changing the time index. This then
also holds for any time slice t, 1 ≤ t ≤ T −1, since ūt,1 will be again a linear combination
of terms ût−1,i, i ∈ Le, and the probability density function factorises as in Proposition
4.1.2.

A.3.2 Proof of Theorem 4.3.2

To prove Theorem 4.3.2 we proceed as follows:

• We relate the lines of the pseudo-code of Algorithm 4.3.1 to the equations (4.1.4)-
(4.1.7) of Theorem 4.1.13 and their variations which include optimisation steps in
equations (4.3.1) and (4.3.2);

• We then show that each panel and the SB have sufficient information to perform
the steps of the algorithm they are responsible for;

• We conclude by showing that the optimisation steps, which in the algorithm cor-
respond to lines (8) and (15), are able to identify optimal decisions using only
combinations of quantities individual panels are able to calculate.
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We start with the first two bullets. Line (1) describes the backward induction step over
the time index, t, whilst line (2) does the same over the index of the vertices of the
graph, i. Now note that in lines (5)-(7), Panel Gi : ũt,i using equation (4.1.5). Each
panel has enough information to do this, since line (10) guarantees that the scores are
communicated to the panels overseeing father vertices and line (14) denotes the fact that
the SB transmits ût,i to the appropriate panels. The functions ũt,i are then sent to the
SB, who performs an optimisation step in line (8) and communicates the result back to
the panel. We address the validity of this step below.

Since the SB : u∗t,i −→ Gi, each panel is able to compute ū∗t,i (lines 10-11) following
equation (4.3.2). As noted before, if i is not the root of the DAG, ū∗t,i is sent to the
appropriate panel, whilst, if i = 1, as specified by the if statement in line (9), −→ SB.
For each time slice with time index t 6= 1, lines (13)-(14) compute ût,i, as in equation
(4.1.7). These are sent to the appropriate panels, which can then continue the backward
inductive process from the time slice with a lower time index. If on the other hand
t = 1, then the expected utility is a function of the initial decision space D(0) only. The
SB can then perform a final optimisation step over this space and thus conclude the
algorithm (line 15).

We now address the optimisation steps. The influence on the scores associated with time
slices with index bigger than t of a decision space Di(t) are included, by construction,
only in the terms ût,k, where k is either the index of a descendant Yk(t) of Yi(t) or
k = i. Further note that the same decision space Di(t) can affect the scores of terms
including descendants of Yi(t) at the same time point. Thus the whole contribution of
Di(t) is summarised within ũt,i, as it can be seen by recursively using equations (4.1.5)
and (4.1.6).

Now, as specified by equation (4.3.1), the optimisation step over Di(t) is performed by
maximising ũt,i, which carries all the information concerning this decision space. More
specifically, no other term is an explicit function of Di(t) at this stage of the algorithm,
as guaranteed by equations (4.1.2). Finally, Structural Assumption 4.1.4 guarantees that
all the elements that appears as arguments of ũt,i are observed and therefore known at
the time the decision associated to this decision space needs to be made.
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A.4 Proofs of Chapter 5

A.4.1 Proof of Theorem 5.4.6

Fix a policy d ∈ D and suppress this dependence. Since R = Y , the utility factorisation
is panel separable and the marginal utilities are polynomials, the utility function can be
written as

u(y) =
∑

I∈P0([m])
kI
∑
i∈I

 ∑
bi∈Bi

ρbi
ybi
i

 , (A.4.1)

for Bi ⊂ Z>0. Note also that we can rewrite (A.4.1) as

u(y) = û(y[m−1]) + û(ym),

where

û(y[m−1]) =
∑

I∈P0([m−1])
kI
∏
i∈I

 ∑
bi∈Bi

ρbi
ybi
i

 ,
û(ym) =

∑
I∈P0([m])∩{m}

kI
∏
i∈I

 ∑
bi∈Bi

ρbi
ybi
i

 . (A.4.2)

Calling θ the overall parameter vector of the IDSS, the conditional expected utility
function, E(u(Y ) | θ), can be written applying sequentially the tower rule of expectation
as

E(u(Y ) | θ) = EY1|θ
(
EY2|Y1,θ

(
· · ·EYm−1|Y[m−2],θ

(
û(y[m−1]) + EYm|Y[m−1],θ (û(ym))

)))
.

(A.4.3)
From equation (A.4.2), the definition of a polynomial SEM and observing that the power
of a polynomial is still a polynomial function of the same arguments, it follows that

EYm|Y[m−1],θ (û(ym)) = pm(Y[m−1],θ), (A.4.4)

where pm is a generic polynomial function. Thus û(Y[m−1])+EYm|Y[m−1],θ (û(ym)) is also
a polynomial function of the same arguments.

Following the same reasoning to deduce (A.4.4), we then have that

EYm−1|Y[m−2],θ

(
û(y[m−1]) + EYm|Y[m−1],θ (û(ym))

)
= pm−1(Y[m−2],θ),

where pm−1 is a generic polynomial function. Therefore the same procedure can be ap-
plied to all the expectations in (A.4.3). We can then write E(u(Y ) | θ) = p1(θ), where
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p1 is a generic polynomial function. This is by construction an algebraic conditional ex-
pected utility, where the functions λij are monomials. Partial independence and Lemma
5.4.1 then guarantees score separability holds.

A.4.2 Proof of Proposition 5.5.9

We prove this result via induction over the number of vertices of the DAG. If the DAG
has only one vertex

u(r) = k1
∑
i∈n1

ρ1iy
i
1,

which can be seen as an instance of equation (5.5.11). Assume the result holds for a
network with n− 1 vertices. A multilinear utility factorisation can be rewritten as

u(r) =
∑

I∈P0([n−1])
kI
∏
i∈I

ui(yi) +
∑

I∈P0([n])∩{n}
kI

∏
i∈I\{n}

ui(yi)un(yn) + knun(yn). (A.4.5)

The first term on the rhs of (A.4.5) is by inductive hypothesis equal to the sum of all
the possible monomial of degree αT = (α1, . . . , αn−1, 0) where 0 < αi < ni, i ∈ [n]. The
other terms only include monomials such that the exponent of yn is not zero. We have
that, letting nT

i−1 = (ni)i∈[n−1] and y[n−1] =
∏
i∈[n−1] yi,

∑
I∈P0([n])∩{n}

kI
∏

i∈I\{n}
ui(yi)un(yn) + knun(yn) =

∑
0<lexα≤lexnn−1

cαy
α
[n−1]

 ∑
i∈[nn]

ρniy
i
n

+ knun(yn)

=
∑

0<lexα≤lexnn−1
i∈[nn]

cαρniy
α
[n−1]y

i
n + knun(yn)

=
∑

0′<lexα≤lexnn
αn 6=0

cαy
α
[n]. (A.4.6)

Therefore, the sum of the first term on the rhs of (A.4.5) and (A.4.6) equals equation
(5.5.11).

A.4.3 Proof of Theorem 5.6.3

For a subset I ∈ P0([m]), let jI be the index of the variable appearing before the utility
vertex with index umaxI in the decision sequence. Let CiI = {z ∈ V : i ≤ z ≤ jI}. The
conditional expected utility function of equations (2.5.2)-(2.5.5) can be (less intuitively)
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written as

ūi(yui) =
∑

I∈P0([m]l−1)
ūIi (yBi) =

∑
I∈P0({l,...,m})

knI−1 ∏
s∈I

ksus(yPs)
∑

y
Ci

I
∈Y

Ci
I

P (yCi
I
| yBi),

(A.4.7)
where

P (yCi
I
| yBi) =

∏
t∈Ci

I

P (yt | yBt), (A.4.8)

and P (yA | yB) = P(YA = yA | YB = yB). The conditional expected utility therefore
depends on the power set of the indices of the utility vertices subsequent to Yi in the
decision sequence. We can note that for any I, J ∈ P0([ml−1]) such that #I = #J
and umaxI = umaxJ , ūIi (yBi) and ūJi (yBi) have the same polynomial structure since
CiI = CiJ . Now for a = l, . . . ,m and b = l, . . . , a, the binomial coefficient

(a−l
b−l
)

counts
the number of elements I ∈ P0([m]l−1) having #I = b − l + 1 and including a. Thus
riba in equation (5.6.2) counts the correct number of monomials having a certain degree
since YCI(i) = ×t∈Ci

I
Yt. Further note that considering each combination of b and a in

the ranges specified above, we consider each element of P0([m]l−1).

By having a closer look at diba in equation (5.6.2) it is easy to deduce the corresponding
degree of these monomials. The first term of diba, (b− l), computes the degree associated
to the criterion weight k, since b− l = nI−1 and the second term, 2(b− l+1), computes
the degree associated to the product between the criterion weights ks and the utilities
us(yPs) for s ∈ CiI . The last term wia corresponds to the degree deriving from the
probabilistic part of equation (A.4.7), which is equal to the number of non-controlled
vertices between Yi and YjmaxI

(both included) as shown by equation (A.4.8).

Since the set Bi includes the arguments of ūi(yBi) and Y = ×i∈[n]Yi, equation (5.6.1)
guarantees that the dimension of the conditional expected utility vector is

∏
t∈Bi

rt.

A.4.4 Proof of Theorem 5.6.12

For i, j, k, l ∈ V and s, t ∈ [m], an asymmetry Yi = yi ⇒ Yj = yj implies that any
monomials that include terms of the form pkykπ(k), θsπ(s), pkykπ(k)plylπ(l), θtπ(t)θsπ(s) and
pkykπ(k)θsπ(s) entailing both instantiations yi and yj are associated to a non possible
combination of events, with yk ∈ Yk, π(k) ∈ YΠ(k), yl ∈ Yl, π(l) ∈ YΠ(l), π(t) ∈ YP (t)

and π(s) ∈ YP (s). Thus these monomials have to be set equal to zero.

For j < t ≤ z, ūt has an associated set Bt which includes both i and j and consequently∏
s∈Bt\{i∪j} rs rows of the vector corresponds to the conditioning on Yi = yi and Yj = yj .

Therefore all the monomials in those rows have to be set equal to zero.
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For i < t ≤ j, the index i is in the set Bt, whilst the variable Yj has been already
EUMarginalised. Thus, there are only

∏
s∈Bt\{i} rs rows conditional on the event Yi =

yi. In those rows only some of the monomials are associated to the event Yj = yj .
Specifically, the ones implying Yj = yj can only be multiplying a term including a θxPx

from a utility vertex ux subsequent to Yj in the MID DS. We can deduce that there are∏ja
s=t rs/rj monomials of degree dtba that include the case Yj = yj in such entries of ūt,

for a ∈ [m]x−1 and b ∈ [a]l−1 (using the notation of Theorem 5.6.3).

Lastly, if t ≤ i, then the set Bt does not include i and j, which have been both EU-
Marginalised. Thus monomials including a combination of the events Yj = yj and Yi = yi

appears in each row of ūt. Just as before, we can deduce that there are
∏ja
s=t rs/(ri · rj)

monomials of degree dtba, a ∈ [m]x−1, b ∈ [a]l−1, implying the event Yi = yi ∧ Yj = yj .
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Graph Theory

B.1 Some Definitions

Definition B.1.1. A graph G is a pair G = (V (G), E(G)), where V (G) is a finite set of
vertices, or nodes, of G and E(G) is a subset of V (G)×V (G) of ordered distinct pairs
of vertices, called edges, or arcs, of G.

Note that our definition does not allow for the presence of multiple edges between the
same two vertices. Edges connecting one vertex to itself are also not allowed by the
definition above. Throughout the thesis we consider generic graphs whose vertex set is
equal to {Yi : i ∈ [n]}, {Y T

i : i ∈ [n]} or {ri : i ∈ [m]}, among the others. In this
appendix we consider the vertex set {Yi : i ∈ [n]}, unless otherwise specified, to define
the terminology employed in this thesis. This however straightforwardly applies to any
other vertex set.

Let i, j ∈ [n]. For Yi, Yj ∈ V (G), if (Yi, Yj), (Yj , Yi) ∈ E(G) we say that there is an
undirected edge between Yi and Yj . The vertices Yi and Yj are said to be neighbours. The
set of the indices of the neighbours of a vertex Yi is denoted by Nei. If (Yi, Yj) ∈ E(G)
but (Yj , Yi) 6∈ E(G), we say that there is a directed edge from Yi to Yj . We further say
that Yi is a parent of Yj and that Yj is a child of Yi. The set of the indices of the parents
of Yi is denoted with Πi, whilst Chi is the set of the indices of its children. We define
Fai = {i} ∪ Πi and we call {Yi} ∪ {Yj : j ∈ Πi} the family of Yi. The boundary of Yi is
{Yj : j ∈ Bdi}, where Bdi = Πi ∪Nei. If (Yi, Yj) ∈ E(G) and/or (Yj , Yi) ∈ E(G), we say
that Yi and Yj are joined.

A path of length m from Yi1 to Yjm in a graph G is a sequence of m distinct edges in
E(G)

((Yi1 , Yj1), . . . , (Yik , Yjk), (Yik+1 , Yjk+1), . . . , (Yim , Yjm)),

200
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such that Yjk = Yik+1 , k ∈ [m − 1], ik, jk ∈ [n] and we say that the path ends in Yjm .
A cycle is a path with the additional condition that Yi1 = Yjn . A rooted path of length
m+ 1 from Yi1 to Yjm is a sequence comprising of a vertex in V (G) and m distinct edges
in E(G) is such that

(Yi1 , (Yi1 , Yj1), . . . , (Yik , Yjk), (Yik+1 , Yjk+1), . . . , (Yim , Yjm)),

where Yjk = Yik+1 , k ∈ [m− 1], ik, jk ∈ [n]. Cycles and (rooted) paths including at least
one directed edge are called directed cycles and directed (rooted) paths respectively.

If in G there are both a path from Yi to Yj and a path from Yj to Yi we say that Yi
and Yj are connected. It can be seen that the vertex set of a graph G can be uniquely
partitioned into subsets of vertices such that every element of the subset is connected
with all the other elements of that subset. We call such subsets the strong components
of G. We further let a trail from Yi to Yj be a path where two consecutive vertices of
the associated sequence simply needs to be joined.

Definition B.1.2. We define the following special graphs:

• if all the edges of G are undirected we say that G is an Undirected Graph (UG);

• if all the edges of G are directed we say that G is a directed graph;

• if a graph G includes both directed and undirected graphs we say that G is a mixed
graph;

• the undirected version of a generic graph G, denoted by GU is the undirected graph
obtained by replacing every directed edge with an undirected one;

• a graph G′ = (V (G′), E(G′)) is a subgraph of G = (V (G), E(G)) if V (G′) ⊆ V (G)
and E(G′) ⊆ E(G) ∩ {V (G′)× V (G′)}. If E(G′) = E(G) ∩ {V (G′)× V (G′)} we say
that G′ is the subgraph of G induced by V (G′);

• a graph G is complete if each pair of its vertices is joined;

• a clique {Yi : i ∈ C}, C ⊆ [n], of a graph G is such that the subgraph induced by
{Yi : i ∈ C} is a complete maximal subgraph of G, where maximal means that there
is no C ⊂ C ′ such that the subgraph induced by {Yi : i ∈ C ′} is complete;

• a graph G is connected if there is a trail between every pair of vertices in G;

• a Directed Acyclic Graph (DAG) is a directed graph with no directed cycles;

• a Chain Graph (CG) is a mixed graph with no directed cycles;
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Note in particular that DAGs and UGs are special cases of CGs. Furthermore the strong
components of a DAG all consists of a single vertex.

B.2 Chain Graphs and Directed Acyclic Graphs

We now focus in more detail on CGs. We first note that it is always possible, although
not uniquely, to well-order the vertices of a CG with an indexing such that if there
is a directed edge from Yi to Yj , then i < j. See for example Cowell et al. [1999] for
algorithms that allow for a construction of such an indexing.

For a well-ordered CG G, we say that Yi is an ancestor of Yj if there is a path from Yi

to Yj but not a path from Yj to Yi. In this case Yj is also call a descendant of Yi and
we denote with Dei the set of the indices of descendants of Yi. The ancestral set of a
vertex Yi is the set including all its ancestors and Yi itself. We denote with Ai the set of
indices of the variables in the ancestral set and we define A′i = Ai \ {i} (this is usually
referred to as the non-descendant set). More generally the ancestral set of {Yi : i ∈ A},
A ⊆ [n], is the union of the set of ancestors of every element in {Yi : i ∈ A} together
with the elements in {Yi : i ∈ A}. The ancestral graph of {Yi : i ∈ A} is the subgraph of
G induced by {Yi : i ∈ A}.

Let A, B and C be three disjoint subsets of [n]. We say that {Yi : i ∈ C} separates
{Yi : i ∈ A} from {Yi : i ∈ B} if every trail from any element in {Yi : i ∈ A} to any
element in {Yi : i ∈ B} goes through at least one element in {Yi : i ∈ C}. We now define
a special type of chain graph.

Definition B.2.1. Given a CG G, the moral graph, Gm, of G is the undirected graph
obtained from G by the following procedure:

• add an undirected edge between any pair of vertices that have children in a common
strong component and that are not already joined;

• form the undirected version of the obtained graph.

Let G now be a well-ordered DAG. Note that for a DAG the moralisation process adds
an edge between all pairs of parents of the same children not already joined by a directed
edge. The resulting graph from the moralisation of a BN is said to be decomposable. We
say that a vertex Yi is the father of Yj and Yj is its son, for Yi, Yj ∈ G, if (Yi, Yj) ∈ E(G)
and there is no other directed path from Yi to Yj . Note that in a decomposable DAG
each vertex either has one or no father. We denote with Fi the index of the father of
Yi, whilst Si is the set of the indices of its sons. A vertex of a DAG with no children is
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called leaf, whilst a root is a vertex with no parents. We let Le be the index set of the
leafs of the DAG.

Consider now an undirected graph G and let σ be a cycle. A chord of this cycle is an edge
(Yi, Yl) ∈ E(G) such that the edges (Yi, Yj), (Yk, Yl) ∈ E(G) are non consecutive elements
of σ. The undirected graph G is said to be chordal if all its cycles of length at least
four have a chord. It is possible to show that the notion of chordal graph coincides with
the one of decomposable graph (which for the purpose of this thesis we omit). Thus
generally we refer to a chordal graph as a decomposable graph: see for more details
Cowell et al. [1999]. We also say that a chain graph is decomposable meaning that its
undirected version is chordal.

The last concept concerning undirected graphs we define here is the one of decomposition.

Definition B.2.2. The sets {Yi : i ∈ A} and {Yi : i ∈ B}, A,B ⊂ [n] are said to form
a decomposition of a graph G with vertex set {Yi : i ∈ [n]} if

• A ∪B = [n];

• {Yi : i ∈ A ∩B} separates {Yi : i ∈ A} from {Yi : i ∈ B};

• the subgraph of G induced by {Yi : i ∈ A ∩B} is complete.

B.3 Trees

We now deal with a special class of graphs called trees.

Definition B.3.1. A graph G is a tree if it is connected and its undirected version has
no cycles.

Note that in a tree there is a unique trail between any two vertices. A rooted tree is a
tree with a designated vertex called root. A leaf of a tree is a vertex which is joined to
at most one other node. A forest is a graph having no cycles, i.e. its strong components
are all trees.

An important class of trees is defined below.

Definition B.3.2. Let G be an undirected graph, {Yj : j ∈ Ci}, i ∈ [m], its cliques and
C = {C1, . . . , Cm}. A junction tree of G has vertex set {YC : C ∈ C} and is such that
Ci ∩Cj ⊂ Ck, i, j, k ∈ [m], for any Ck such that {Yl : l ∈ Ck} is a member of an edge in
the unique path between {Yl : l ∈ Ci} and {Yl : l ∈ Cj}.
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It is possible to show that if G is decomposable, then there exists a unique junction
tree associated to that graph and its cliques can be ordered so that they exhibit the
running intersection property, i.e., for all j ∈ [m], there is an i < j such that Sj =
Cj ∩ ∪k∈[j−1]Ck ⊆ Ci. Note that {Yi : i ∈ Sj}, separates {Yi : i ∈ Cj} from {Yi : i ∈
∪k∈[j−1]Ck} and we therefore call it a separator. Let also S = {S2, . . . , Sm}. Note that
by construction Sj ⊂ Ci for an i < j. Cowell et al. [1999] presented several algorithms
to construct a junction tree exhibiting the running intersection property.

Another class of trees we deal with is introduced now.

Definition B.3.3. A directed tree T is a directed graph with the following two proper-
ties:

• it has a unique vertex with no parents called root;

• all other vertices have exactly one parent.

It can be noted that a directed tree is also a generic tree according to Definition B.3.1.
The vertex set of a directed tree, V (T ), is partitioned into the set of leaves L(T ), the
vertices with no children, and the set of situations S(T ) = V (T ) \L(T ). A floret F(vi)
of a situation vi ∈ S(T ) is the subgraph of T generated by {vi ∪ vChi

}. Note that any
directed tree is fully defined by its set of florets.
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Bayesian Models

C.1 Discrete Models

C.1.1 Beta-Binomial Model

Let Y | θ ∼ Bin(n, θ) for n ∈ Z≥1 and θ ∈ [0, 1], i.e., given θ, Y is a Binomial distribution
associated to n independent trials with probability θ of success. Its density function is
written as

f(y | θ) =
(
n

y

)
θy(1− θ)n−y,

where
(n
y

)
is a Binomial coefficient. Recall that E(Y | θ) = nθ and V(Y | θ) = nθ(1− θ).

Assume θ ∼ Be(p, q), p, q ∈ Z>0, i.e. θ follows a Beta distribution whose density can be
written as

π(θ) = 1
B(p, q)θ

p−1(1− θ)q−1,

where B(p, q) is the Beta function equal to

B(p, q) = Γ(p)Γ(q)
Γ(p+ q) , (C.1.1)

with
Γ(p) =

∫ ∞
0

xp−1e−xdx,

for p ∈ R>0. Note that, if p ∈ Z≥1, then Γ(p) = p−1!. The expectation and the variance
of θ can be seen to be equal to

E(θ) = p

p+ q
, V(θ) = pq

(p+ q)2(p+ q + 1) .
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By applying Bayes theorem in equation (2.1.2) the posterior density of θ | Y is propor-
tional to

θy+p−1(1− θ)q+n−y−1,

and therefore θ | Y ∼ Be(y+ p, q+ n− y). Consequently beta priors are conjugate with
binomial likelihoods.

C.1.2 Dirichlet-Multinomial Model

Let Z1, . . . , Zn, n ∈ Z≥1 be independent and identically distributed random variables
taking values in k ∈ Z≥1 possible categories with probabilities θ1, . . . , θk, θi ∈ [0, 1],
i ∈ [k]. Let Yi, i ∈ [k], denote the random variable counting the number of observations
of the Zs in the i-th category. By construction n =

∑
i∈[k] yi. Letting θ = (θi)T

i∈[k],
Y = (Yi)T

i∈[k], we have that Y | θ is a Multinomial distribution, denoted as Y | θ ∼
Multi(n,θ), whose density can be written as

f(y | θ) =
(
n

y

) ∏
i∈[k]

θyi
i ,

where (
n

y

)
= n!
y1! · · · yk!

,

is a Multinomial coefficient. Note that marginally each Yi | θ, i ∈ [k], behaves as a
Binomial distribution with parameters n and θi, and C(Yi, Yj | θ) = −nθiθj , i 6= j,
i, j ∈ [k].

Assume θ follows a Dirichlet distribution of parameter a = (ai)T
i∈[k] ∈ Rk>0, θ ∼ Di(a),

with density
π(θ) = 1

B(a)
∏
i∈[k]

θai−1
i ,

where B(a) is a generalisation of the beta function in equation (C.1.1) equal to

B(a) =
∏
i∈[k] Γ(ai)

Γ
(∑

i∈[k] ai
) .

Note that for any I ⊂ [k], θI ∼ Di(aI), where θi = (θi)T
i∈I and aI = (ai)T

i∈I , and that
θi ∼ Be(ai, |a| − ai), i ∈ [k], where |a| =

∑
i∈[k] ai. The first two moments have a closed

form which can be easily deduced to be, for i, j ∈ [k], i 6= j,

E(θi) = ai
|a|
, V(θi) = ai(|a| − ai)

a2(|a|+ 1) , C(θi, θj) = − aiaj
a2(|a|+ 1) .
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Order moment

1 µ

2 ψ + µ2

3 µ3 + 3µψ

4 µ4 + 6µ2ψ + 3ψ2

5 µ5 + 10µ3ψ + 15µψ2

6 µ6 + 15µ4ψ + 45µ2ψ2 + 15ψ3

Table C.1: First six moments of a Normal distribution with mean µ and variance ψ.

We can note that the Dirichlet family is conjugate with the Multinomial one by simply
applying Bayes theorem in equation (2.1.2). It holds that

π(θ | y) ∝
∏
i∈[k]

θyi+ai−1
i ,

and therefore θ | Y ∼ Di(a+ y).

C.2 Continuous Models

C.2.1 Normal Inverse Gamma Models

Let Y | µ, ψ ∼ N(µ, ψ), where µ ∈ R and ψ ∈ R>0, i.e. Y follows a Normal (or
Gaussian) distribution given the parameters µ and ψ.1 Recall that E(Y | µ, ψ) = µ,
V(Y | µ, ψ) = ψ and that the density is written as

f(y | µ, ψ) = 1√
2πψ

exp
(
− 1

2ψ (y − µ)2
)
. (C.2.1)

The distribution of a Normal random variable is fully characterised by its first two
moments since every higher order moment is a function of these. We summarise the first
moments of a Normal distribution in Table C.1.

Suppose the prior distribution over (µ, ψ) has density

π(µ, ψ) =
√
r√

2πψ
(a/2)b/2

Γ(b/2) (ψ)−b/2−1 exp
(
−a+ r(µ−m)2

2ψ

)
, (C.2.2)

1We choose to parametrise the variance with ψ instead of the more common ψ2 in order to highlight
the degree of the moments required for our computations.
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for m ∈ R and a, b, r ∈ R>0. Note that the joint density π(µ, ψ) can be written as the
product of π(µ | ψ) and π(ψ), where

π(µ | ψ) =
√
r√

2πψ
exp

(
−r(µ−m)2

2ψ

)
,

π(ψ) = (a/2)b/2

Γ(b/2) (ψ)−a/2−1 exp
(
− a

2ψ

)
.

Therefore µ | ψ ∼ N(m,ψ/r) and ψ ∼ IG(a, b), meaning that ψ follows an Inverse
Gamma distribution with parameters a and b. We say that a distribution having the
density in equation (C.2.2) is a Normal Inverse Gamma with parameters m, r, a and b,
i.e. (µ, ψ) ∼ NIG(m, r, a, b). We study in more details the features of this distribution
in the following section.

Now the posterior density (µ, ψ) | y can be deduced by multiplying equations (C.2.1)
and (C.2.2) and is proportional to

1√
2πψ

exp
(
−(1 + r)

(
µ− y + rm

1 + r

)2
/2ψ

)
(ψ)−b−

3
2 exp

(
− 1

2ψ

(
a+ r

1 + r
(y −m)2

))
.

(C.2.3)
Equation (C.2.3) is proportional to the density of a NIG(m′, r′, a′, b′), where

m′ = y+rm
1+r , r′ = 1 + r,

b′ = b+ 1
2 , a′ = a+ 1

2
r

1+r (y −m)2.

Therefore an NIG distribution is conjugate with a Normal likelihood.

C.2.2 Bayesian Normal Linear Models

We now consider a Normal linear model defined by

Y = Xβ + ε,

where y = (yi)T
i∈[n], n ∈ Z≥1, is the vector of observations from Y , X is a n× p matrix

of known values of covariates, p ∈ Z≥1, β = (βi)T
i∈[p] ∈ Rp is a vector of parameters

and ε = (εi)T
i∈[n] is a vector of random errors, where ε1, . . . , εn are independent and

identically distributed Normal random variables with mean 0 and variance ψ ∈ R>0.
Therefore Y | β, ψ ∼ N(Xβ, ψIn), where In is the identity matrix of dimension n × n.
The density of this multivariate Normal is equal to

f(y | β, ψ) = (2πψ)−
n
2 exp

(
− 1

2ψ (y −Xβ)T(y −Xβ)
)
.
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Assume a multivariate NIG prior is given to (β, ψ) with parameters (m, V, a, b), whose
density can be written as

π(β, ψ) =
(
a

2

) b
2

(ψ)−
b+p+2

2
1

(2π)
p
2 det(V )

1
2 Γ( b2)

exp
(
−(β −m)TV −1(β −m) + a

2ψ2

)
,

(C.2.4)
where V is a p×p positive semidefinite symmetric matrix,m ∈ Rn, a, b ∈ R>0 and det(V )
is the determinant of V . Note that again this is the product of a Normal distribution
over β | ψ and an Inverse Gamma over ψ. The marginal moments of β and ψ can be
easily deduced and are equal to

E(β) = m, V(β) = a
b−2V,

E(ψ) = a
b−2 , V(ψ) = 2a2

(b−2)2(b−4) .

Note that β marginally follows a multivariate T distribution with b degrees of freedom
and parameters m and aV , denoted as β ∼ Tb(m, aV ), whose density is equal to

π(β) = ab/2Γ((b+ p)/2)
det(V )1/2πp/2Γ(b/2)

(a+ (β −m)TV −1(β −m))(b+p)/2.

Using again Bayes theorem in equation (2.1.2) it can be shown that the NIG density
in equation (C.2.4) is conjugate for the Normal linear model. Its posterior is then
NIG(m′, V ′, a′, b′), where

V ′ =
(
V −1 +XTX

)−1
, m′ =

(
V −1 +XTX

)−1 (
V −1m+XTy

)
,

b′ = b+ n, a′ = a+mTV −1m+ yTy −m′TV ′−1m′.

C.2.3 Multivariate Normal Models

We now consider a generalisation of the previous sections and we now sample from
Y T = (Y T

i )i∈[n], where each Yi | µ,Ψ ∼ N(µ,Ψ), i ∈ [n], and ⊥⊥ i∈[n]Yi | µ,Ψ. We let
µ ∈ Rm and Ψ be a m×m symmetric positive semidefinite matrix. In this setting

f(y | µ,Ψ) = (2π)−mn/2 det(Ψ)−n/2 exp
(
−
∑
i∈[n](yi − µ)TΨ−1(yi − µ)

2

)
.

Note that the difficulty here is that it needs to be given a prior distribution to the
covariance matrix Ψ. The approach to elicit such prior is similar to the ones above and
factorises the density π(µ,Ψ) as π(µ | Ψ)π(Ψ). The distribution of µ | Ψ is assumed to
be Normal with mean m and covariance c−1Ψ, c ∈ R>0, whilst Ψ is assumed to follow
the so called Inverse Wishart distribution, denoted as IW. If Ψ ∼ IW(A, d), where A is
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positive semidefinite symmetric m×m matrix and d ∈ R>m−1, then the density is equal
to

π(Ψ) = k−1 det(A)d/2 det(Ψ)−(d+m+1)/2 exp
(
−tr(Ψ−1A)

2

)
,

where tr denotes the trace of a matrix and

k = 2dm/2πm(m−1)/4 ∏
i∈[m]

Γ((d+ 1− i)/2).

The joint distribution of (µ,Ψ) so defined follows a Normal Inverse Wishart distribution,
denoted as NIW. Therefore, if we let (µ,Ψ) ∼ NIW(m, c, A, d), its density is equal to

π(µ,Ψ) = det(A)d/2 det(Ψ)−(d+m+2)/2

(2π)m/2k
exp

(
−c(µ−m)TΨ−1(µ−m) + tr(Ψ−1A)

2

)
.

The moments of the Normal distribution can be straightforwardly deduced, whilst for
the Inverse Wishart the computation of moments is more complicated. We report here
the mean of Ψ, whilst its second moment can be found in Siskind [1972]. Specifically

E(µ) = m, V(µ) = c−1Ψ, E(Ψ) = (d−m− 1)−1A.

Note that also just as in the Normal linear model, µ marginally follows a multivariate
T distribution with d+ 1−m degrees of freedom and parameters (m, c−1A).

It can be shown that the NIG distribution is conjugate with the multivariate Normal
likelihood and the posterior has parameters (m′, c′, A′, d′), where

m′ = (c+ n)−1(cm+ nȳ), c′ = c+ n,

A′ = A+ nS + cn(c+ n)−1(m− ȳ)T(m− ȳ), d′ = d+ n,

with ȳ =
∑
i∈[n] yi and S = n−1∑

i∈[n](yi − ȳ)(yi − ȳ)T.
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Polynomial Algebra

In this appendix we introduce the concepts of polynomial algebra that we use in the
main body of the thesis [see e.g. Cox et al., 2007, for more details]. We start by defining
a monomial.

Definition D.0.1. A monomial with indeterminates y1, . . . , yn, n ∈ Z≥1, is

yα = yα1
1 · · · y

αn
n ,

where y = y1 · · · yn and α = (αi)T
i∈[n] ∈ Zn≥0. The degree of yα is |α| =

∑
i∈[n] αi, whilst

α is its multi-degree.

A polynomial is a finite linear combination of monomials with coefficients taking values
in a field k.1 For the purpose of this thesis, we always assume this field to coincide with
the real numbers R.

Definition D.0.2. A polynomial p(y) with indeterminates y1, . . . , yn, and coefficients
cα in a field k is defined as

p(y) =
∑
α∈A

cαy
α,

where A ⊂ Zn≥0.

Definition D.0.3. In the notation of Definition D.0.2, a term of p(y) is cαyα if cα 6= 0,
and the degree of p(y) is the maximum |α| such that the coefficient cα is non zero.

Definition D.0.4. We say that a polynomial p(y) is homogeneous if all its terms cαyα

have the same degree. Non homogeneous polynomials are called inhomogeneous. An
homogeneous polynomial such that, for every term cαy

α, αi is either 1 or 0 is called
square-free or multilinear.

1A field is a set where addition, subtraction, multiplication and division have the standard properties
of operations. A formal definition can be found in most algebra textbooks.
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Polynomials with one indeterminate have one term only of a particular degree, whilst
polynomials with more than one indeterminate can have many terms with the same
degree. In many contexts it is important to order any two terms of a polynomial. We
therefore now discuss the notion of monomial ordering. Denote an ordering (i.e. a
binary relation) with >. First note that there is a one to one correspondence between a
monomial yα and its exponent α. Therefore any ordering on Zn≥0 induces an ordering on
the monomials. A basic requirement that an ordering on monomials needs to entertain
is to be total.

Definition D.0.5. An order > on Zn≥0 is total if, for any α,β ∈ Zn≥0, exactly one of
the three statements α > β, β > α, β = α, is true.

In general, an order on the monomials requires a few more conditions.

Definition D.0.6. A monomial ordering > on Zn≥0 is a binary relation satisfying:

• > is a total ordering on Zn≥0;

• for α,β,γ ∈ Zn≥0 ,if α > β then α+ γ > β + γ;

• every non empty subset of Zn≥0 has a smallest element with respect to >.

Two examples of monomial orderings are the lexicographical order and the reverse
lexicographical order.

Definition D.0.7. Let α = (αi)T
i∈[n] and β = (βi)T

i∈[n], with α,β ∈ Zn≥0. We say
α >lex β with respect to a lexicographic order if in the difference α−β the left-most non
zero entry is positive. A reverse lexicographic order, >revlex, is such that if α >revlex β

then in the difference α− β the right-most non zero entry is positive.

Lastly, we show that powers of polynomials can be computed applying the Multinomial
theorem [see e.g. page 336 of Cox et al., 2007].

Theorem D.0.8. Let m,n ∈ Z≥1, α ∈ Zn≥0 and y = y1 · · · , yn, where yi is an indeter-
minate, i ∈ [n]. Then

(y1 + · · ·+ yn)m =
∑
|α|=m

(
m

α

)
yα,

where (
m

α

)
= m!
α1! · · ·αn! ,

is the Multinomial coefficient.
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Computer Code

Computation of the highest index in each parent set of a utility node.
Inputs: PiU::table, parent sets of utility nodes; m::integer, number of utility nodes.
Output: J::list.

CompJ := proc(PiU,m) local i,j:

for j to m do J[j] := max(PiU[J]) end do:

return convert(J,list):

end proc:

Computation of the indices of the argument of the expected utility at step i.
Inputs: PiU::table; PiV::table, parent sets of random nodes; i::integer;
n::integer, number of random nodes; J::list.
Output: Bi[i]::set.

CompBi := proc(PiU,PiV,i,n,J) local Bi, part, j:

Bi[i], part := {},{}:

for j from i to n do

part := part union {j}:

if member(j,V) then Bi[i] := Bi[i] union PiV[j] end if:

if member(j,J,’l’) then Bi[i] := Bi[i] union PiU[l] end if:

end do:

Bi[i] := Bi[i] minus part:

return Bi[i]:

end proc:

Initialisation of an MID.
Inputs: p::table, probability vectors; psi::table, utility vectors;

213
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PiV::table; PiU::table; n::integer; m::integer.
Outputs: J::list; Bi::table; u::table, expected utility vectors.

Initialise := proc(p, psi, PiV, PiU, n, m) local J, i, Bi, u:

J := CompJ(PiU, m):

for i to n do Bi[i] := CompBi(PiU, PiV, i, n, J) end do:

Bi[n+1], u[n+1] := {}, []:

return J, Bi, u:

end proc:

EUDuplication of a utility vector and an expected utility vector.
Inputs: u::table; psi::table; j::integer; PiV::table; PiU::table; r::table,
size of the decision and sample spaces; Bi::table; J::list.
Outputs: utemp::list, EUDuplicated version of u; psitemp::list, EUDuplicated
version of psi.

EUDuplicationPsi := proc(u, psi, j, PiV, PiU, r, Bi, J)

local i, uprime, psiprime, psitemp, utemp, x, sx, y, h, z:

i, uprime, psiprime:= max(PiU[j]), [], []:

psitemp, utemp:= psi[j], u[i+1]:

for x from max(Bi[i+1], PiU[j]) by -1 to 1 do

if member(x, (PiU[j] union Bi[i+1]) minus (PiU[j] intersect Bi[i+1]))

then sx := 1:

for y from x+1 to max(Bi[i+1], PiU[j]) do

if member(y, Bi[i+1] union PiU[j]) then sx := sx*r[y] end if

end do:

if member(x, Bi[i+1]) then for l to Size(psitemp)[2]/sx do

for z to r[x] do

psiprime := [op(psiprime), op(convert(psitemp, list)

[(l-1)*sx+1 .. l*sx])]

end do end do:

psitemp, psiprime := psiprime, []:

elif member(x, PiU[j]) then for l to Size(utemp)[2]/sx do

for z to r[x] do

uprime := [op(uprime),op(convert(utemp, list)[(l-1)*sx+1..l*sx])]

end do end do:

utemp, uprime := uprime, []:

end if end if end do:

return utemp, psitemp:

end proc:
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EuMultiSum between an expected utility vector and a utility vector.
Inputs: u::table; psi::table; j::integer; PiV::table; PiU::table; r::table;
Bi::table; J::list.
Outputs: ut::list, expected utility vector after an EUMultiSum.

EUMultiSum := proc(u, psi, j, PiV, PiU, r, Bi, J)

local i, uprime, psiprime, ut;

i := max(PiU[j]);

uprime, psiprime:=EUDuplicationPsi(u, psi, j, PiV, PiU, r, Bi, J);

uprime := convert(uprime, list);

if Size(uprime)[1] = 0 then ut := k[j]*˜psiprime

else ut := h*˜k[j]*˜psiprime*˜uprime+˜uprime+˜k[j]*˜psiprime end if;

return ut:

end proc:

EUDuplication of a probability vector and an expected utility vector.
Inputs: u::table; p::table; i::integer; PiV::table; PiU::table; r::table;
Bi::table; J::list.
Outputs: utemp::list, EUDuplicated version of u; ptemp::list, EUDuplicated ver-
sion of p.

EUDuplicationP := proc(u, p, i, PiV, PiU, r, Bi, J)

local uprime, pprime, ptemp, utemp, x, sx, y, l, z:

uprime, pprime, ptemp, utemp := [], [], p[i], u[i+1]:

Uni:= Bi[i+1] union PiV[i] union PiU[j];

if member(i, J) then member(i, J, ’j’);

for x from max(Uni) by -1 to 1 do

if member(x, Uni minus ((Bi[i+1] union PiU[j]) intersect

(PiV[i] union {i}))) then

sx := 1;

for y from x+1 to max(Uni) do

if member(y, Uni) then sx := sx*r[y] end if

end do;

if member(x, Bi[i+1] union PiU[j]) then

for l to Size(ptemp)[2]/sx do for z to r[x] do

pprime := [op(pprime), op(convert(ptemp, list)

[(l-1)*sx+1 .. l*sx])]

end do end do;

ptemp, pprime := pprime, [];

elif member(x, PiV[i]) then
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for l to Size(utemp)[2]/sx do for z to r[x] do

uprime := [op(uprime), op(convert(utemp, list)

[(l-1)*sx+1 .. l*sx])]

end do end do;

utemp, uprime := uprime, []:

end if end if end do;

else for x from max(Bi[i+1], PiV[i]) by -1 to 1 do

if member(x, (Bi[i+1] union PiV[i]) minus (Bi[i+1] intersect

(PiV[i] union {i}))) then

sx := 1;

for y from x+1 to max(Bi[i+1], PiV[i]) do

if member(y, Bi[i+1] union PiV[i]) then sx := sx*r[y] end if

end do;

if member(x, Bi[i+1]) then

for l to Size(ptemp)[2]/sx do for z to r[x] do

pprime := [op(pprime), op(convert(ptemp, list)

[(l-1)*sx+1 .. l*sx])]

end do end do;

ptemp, pprime := psiprime, [];

elif member(x, PiV[i]) then for l to Size(utemp)[2]/sx do

for z to r[x] do

uprime := [op(uprime), op(convert(utemp, list)

[(l-1)*sx+1 .. l*sx])]

end do end do;

utemp, uprime := uprime, []:

end if end if end do end if:

return utemp, ptemp:

end proc:

EUMarginalisation over a sample space.
Inputs: u::table; p::table; i::integer; PiV::table; PiU::table; r::table;
Bi::table; J::list.
Outputs: ut::list, expected utility vector after EUMarginalisation.

EUMarginalisation := proc(u, p, i, PiV, PiU, r, Bi, J)

local uprime, pprime, rows, cols, l, one, zero, row, Iprime, ut;

uprime, pprime := EUDuplicationP(u, p, i, PiV, PiU, r, Bi, J);

pprime, rows, cols := convert(pprime, list), 1, Size(pprime)[2];

for l to i-1 do if member(l, PiV[i]) then
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rows := rows*r[l] end if end do;

one := convert(Vector(r[i], 1), list):

zero := convert(Vector(cols, 0), list):

row, Iprime := [op(zero), op(one)], [op(one)]:

for l to rows-1 do Iprime := [op(Iprime), op(row)] end do;

Iprime := Matrix(rows, cols, [op(Iprime), op(one)]);

ut := convert(Multiply(Iprime, Vector[column](uprime*˜pprime)), list);

return ut:

end proc:

Identification of an optimal policy (at random).
Inputs: r::table; i::integer, index of the decision variable, t::integer, number of
random draws.
Outputs: maxi::vector, optimal decisions.

Maximise := proc(r, i, t) local maxi, l:

maxi := Vector(t, 0):

for l to t do

maxi[l] := RandomTools[Generate](integer(range = 1 .. r[i])) end do:

return maxi:

end proc:

EUMaximisation over a decision space.
Inputs: u::table; i::integer; r::table.
Outputs: u[i]::list, expected utility vector after EUMaximisation.

EUMaximisation := proc(u, i, r) local opt, Istar, j, l, zero;

opt := Maximise(r, i, Size(u[i+1])[2]/r[i]);

zero := convert(Vector(Size(u[i+1])[2], 0), list);

Istar := [];

for j to Size(u[i+1])[2]/r[i] do for l to r[i] do

if opt[j] = l then Istar := [op(Istar), 1]

else Istar := [op(Istar), 0] end if

end do;

if j < Size(u[i+1])[2]/r[i] then

Istar := [op(Istar), op(zero)] end if end do;

Istar := Matrix(Size(u[i+1])[2]/r[i], Size(u[i+1])[2], Istar);

u[i] := convert(Multiply(Istar, Vector[column](u[i+1])), list);

return u[i]:

end proc:
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Symbolic evaluation algorithm for an MID.
Inputs: p::table; psi::table; PiV::table; PiU::table; n::integer;
m::integer; De::set, index set of the decision variables; V::set, index set of the
random variables; r::table.
Output: eu::table, expected utility vectors.

SymbolicExpectedUtility := proc(p, psi, PiV, PiU, n, m, De, V, r)

local J, Bi, utemp, i, j, ceu,best;

with(LinearAlgebra): with(ArrayTools):

J, Bi, eu := Initialise(p, psi, PiV, PiU, n, m);

j := m;

for i from n by -1 to 1 do if j = 0 then if member(i, De) then

eu[i] := EUMaximisation(eu, i, r)

else eu[i] := EUMarginalisation(eu, p, i, PiV, PiU, r, Bi, J)

end if;

else if J[j] = i then if member(i, De) then

utemp[i+1] := EUMultiSum(eu, psi, j, PiV, PiU, r, Bi, J);

eu[i] := EUMaximisation(utemp, i, r)

else

utemp[i+1] := EUMultiSum(eu, psi, j, PiV, PiU, r, Bi, J);

eu[i] := EUMarginalisation(utemp, p, i, PiV, PiU, r, Bi, J)

end if;

j := j-1

else if member(i, De) then eu[i] := EUMaximisation(eu, i, r)

else eu[i] := EUMarginalisation(eu, p, i, PiV, PiU, r, Bi, J)

end if end if end if end do;

return eu:

end proc:

Consider the MID in Figure 2.18 with n = 6 variables (decision or random nodes) and
m = 3 utility nodes.
Definition of the MID number of variables and utility nodes.
n := 6: m := 3:

V, contains the indices of random nodes and De those of the decision nodes.
V := {2, 3, 5, 6}: De := {1, 4}:

Conditional probabilities.
p[6] := [p6111, p6011, p6101, p6001, p6110, p6010, p6100, p6000]:

p[5] := [p5111, p5011, p5101, p5001, p5110, p5010, p5100, p5000]:

p[3] := [p3111, p3011, p3101, p3001, p3110, p3010, p3100, p3000]:
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p[2] := [p211, p201, p210, p200]:

Utility parameters.
psi[1] := [psi11, psi10]:

psi[2] := [psi21, psi20]:

psi[3] := [psi311, psi301, psi310, psi300]:

Parents of random nodes.
PiV[2] := {1}: PiV[3] := {1, 2}: PiV[5] := {3, 4}: PiV[6] := {4, 5}:

Parents of utility nodes.
PiU[1] := {3}: PiU[2] := {5}: PiU[3] := {4, 6}:

Number of levels of the variables.
r[1] := 2: r[2] := 2: r[3] := 2: r[4] := 2: r[5] := 2: r[6] := 2:

Computation of the expected utility vectors.
eu := SymbolicExpectedUtility(p, psi, PiV, PiU, n, m, De, V, r):

Example of the output of SymbolicExpectedUtility, eu[1]:

[((k[1]*psi11+h*k[1]*psi11*((k[2]*psi21+h*k[2]*psi21*

(p6010*psi300*k[3]+p6110*psi310*k[3])+k[3]*psi300*p6010

+k[3]*psi310*p6110)*p5101+(k[2]*psi20+h*k[2]*psi20*

(p6000*psi300*k[3]+p6100*psi310*k[3])+k[3]*psi300*p6000

+k[3]*psi310*p6100)*p5001)+(k[2]*psi21+h*k[2]*psi21*

(p6010*psi300*k[3]+p6110*psi310*k[3])+k[3]*psi300*p6010

+k[3]*psi310*p6110)*p5101+(k[2]*psi20+h*k[2]*psi20*

(p6000*psi300*k[3]+p6100*psi310*k[3])+k[3]*psi300*p6000

+k[3]*psi310*p6100)*p5001)*p3110+(k[1]*psi10+h*k[1]*psi10*

((k[2]*psi21+h*k[2]*psi21*(p6011*psi301*k[3]

+p6111*psi311*k[3])+k[3]*psi301*p6011+k[3]*psi311*p6111)*p5110+

(k[2]*psi20+h*k[2]*psi20*(p6001*psi301*k[3]+p6101*psi311*k[3])

+k[3]*psi301*p6001+k[3]*psi311*p6101)*p5010)+

(k[2]*psi21+h*k[2]*psi21*(p6011*psi301*k[3]+p6111*psi311*k[3])

+k[3]*psi301*p6011+k[3]*psi311*p6111)*p5110+

(k[2]*psi20+h*k[2]*psi20*(p6001*psi301*k[3]+p6101*psi311*k[3])

+k[3]*psi301*p6001+k[3]*psi311*p6101)*p5010)*p3010)*p210+((k[1]*

psi11+h*k[1]*psi11*((k[2]*psi21+h*k[2]*psi21*(p6010*psi300*

k[3]+p6110*psi310*k[3]+k[3]*psi300*p6010+k[3]*psi310*p6110)*p5101

+(k[2]*psi20+h*k[2]*psi20*(p6000*psi300*k[3]+p6100*psi310*k[3])

+k[3]*psi300*p6000+k[3]*psi310*p6100)*p5001)+

(k[2]*psi21+h*k[2]*psi21*(p6010*psi300*k[3]+p6110*psi310*k[3])

+k[3]*psi300*p6010+k[3]*psi310*p6110)*p5101+
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(k[2]*psi20+h*k[2]*psi20*(p6000*psi300*k[3]+p6100*psi310*k[3])

+k[3]*psi300*p6000+k[3]*psi310*p6100)*p5001)*p3100+(k[1]*psi10

+h*k[1]*psi10*((k[2]*psi21+h*k[2]*psi21*(p6011*psi301*k[3]

+p6111*psi311*k[3])+k[3]*psi301*p6011+k[3]*psi311*p6111)*p5110+

(k[2]*psi20+h*k[2]*psi20*(p6001*psi301*k[3]+p6101*psi311*k[3])

+k[3]*psi301*p6001+k[3]*psi311*p6101)*p5010)+

(k[2]*psi21+h*k[2]*psi21*(p6011*psi301*k[3]+p6111*psi311*k[3])

+k[3]*psi301*p6011+k[3]*psi311*p6111)*p5110+

(k[2]*psi20+h*k[2]*psi20*(p6001*psi301*k[3]+p6101*psi311*k[3])

+k[3]*psi301*p6001+k[3]*psi311*p6101)*p5010)*p3000)*p200]
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