KL.GBN
returns the Kullback-Leibler (KL) divergence between an object of class GBN
and its update after a standard parameter variation.
Usage
# S3 method for GBN
KL(x, where, entry, delta, ...)
Arguments
- x
object of class
GBN
.- where
character string: either
mean
orcovariance
for variations of the mean vector and covariance matrix respectively.- entry
if
where == "mean"
,entry
is the index of the entry of the mean vector to vary. Ifwhere == "covariance"
, entry is a vector of length 2 indicating the entry of the covariance matrix to vary.- delta
numeric vector, including the variation parameters that act additively.
- ...
additional arguments for compatibility.
Value
A dataframe including in the first column the variations performed and in the second column the corresponding KL divergences.
Details
Computation of the KL divergence between a Bayesian network and the additively perturbed Bayesian network, where the perturbation is either to the mean vector or to the covariance matrix.
References
Gómez-Villegas, M. A., Maín, P., & Susi, R. (2007). Sensitivity analysis in Gaussian Bayesian networks using a divergence measure. Communications in Statistics—Theory and Methods, 36(3), 523-539.
Gómez-Villegas, M. A., Main, P., & Susi, R. (2013). The effect of block parameter perturbations in Gaussian Bayesian networks: Sensitivity and robustness. Information Sciences, 222, 439-458.
Examples
KL(synthetic_gbn,"mean",2,seq(-1,1,0.1))
#> Variation KL
#> 1 -1.0 1.500
#> 2 -0.9 1.215
#> 3 -0.8 0.960
#> 4 -0.7 0.735
#> 5 -0.6 0.540
#> 6 -0.5 0.375
#> 7 -0.4 0.240
#> 8 -0.3 0.135
#> 9 -0.2 0.060
#> 10 -0.1 0.015
#> 11 0.0 0.000
#> 12 0.1 0.015
#> 13 0.2 0.060
#> 14 0.3 0.135
#> 15 0.4 0.240
#> 16 0.5 0.375
#> 17 0.6 0.540
#> 18 0.7 0.735
#> 19 0.8 0.960
#> 20 0.9 1.215
#> 21 1.0 1.500
KL(synthetic_gbn,"covariance",c(3,3),seq(-1,1,0.1))
#> Variation KL
#> 1 -1.0 NA
#> 2 -0.9 NA
#> 3 -0.8 NA
#> 4 -0.7 NA
#> 5 -0.6 NA
#> 6 -0.5 NA
#> 7 -0.4 NA
#> 8 -0.3 NA
#> 9 -0.2 NA
#> 10 -0.1 0.09657359
#> 11 0.0 0.00000000
#> 12 0.1 0.04726745
#> 13 0.2 0.15342641
#> 14 0.3 0.29185463
#> 15 0.4 0.45069386
#> 16 0.5 0.62361852
#> 17 0.6 0.80685282
#> 18 0.7 0.99796130
#> 19 0.8 1.19528104
#> 20 0.9 1.39762595
#> 21 1.0 1.60412027