Construction of model-preserving co-variation matrices for objects of class CI
.
Usage
total_covar_matrix(ci, entry, delta)
col_covar_matrix(ci, entry, delta)
partial_covar_matrix(ci, entry, delta)
row_covar_matrix(ci, entry, delta)
Arguments
- ci
object of class
CI
.- entry
a vector of length two specifying the entry of the covariance matrix to vary.
- delta
multiplicative variation coefficient for the entry of the covariance matrix given in
entry
.
Details
Functions to compute total, partial, row-based and column-based co-variation matrices to ensure the conditional independences of the original Bayesian network hold after a variation. If no co-variation is required for model-preservation the functions return a matrix filled with ones (no co-variation).
References
C. Görgen & M. Leonelli (2020), Model-preserving sensitivity analysis for families of Gaussian distributions. Journal of Machine Learning Research, 21: 1-32.
Examples
total_covar_matrix(synthetic_ci,c(1,1),0.3)
#> [,1] [,2] [,3] [,4]
#> [1,] 1 1 1 1
#> [2,] 1 1 1 1
#> [3,] 1 1 1 1
#> [4,] 1 1 1 1
total_covar_matrix(synthetic_ci,c(1,2),0.3)
#> [,1] [,2] [,3] [,4]
#> [1,] 0.3 1.0 0.3 0.3
#> [2,] 1.0 0.3 0.3 0.3
#> [3,] 0.3 0.3 0.3 0.3
#> [4,] 0.3 0.3 0.3 0.3
partial_covar_matrix(synthetic_ci,c(1,2),0.3)
#> [,1] [,2] [,3] [,4]
#> [1,] 1.0 1.0 0.3 1
#> [2,] 1.0 0.3 0.3 1
#> [3,] 0.3 0.3 1.0 1
#> [4,] 1.0 1.0 1.0 1
row_covar_matrix(synthetic_ci,c(1,2),0.3)
#> [,1] [,2] [,3] [,4]
#> [1,] 1 1.0 1 1
#> [2,] 1 0.3 1 1
#> [3,] 1 1.0 1 1
#> [4,] 1 1.0 1 1
col_covar_matrix(synthetic_ci,c(1,2),0.3)
#> [,1] [,2] [,3] [,4]
#> [1,] 1.0 1 0.3 1
#> [2,] 1.0 1 1.0 1
#> [3,] 0.3 1 1.0 1
#> [4,] 1.0 1 1.0 1